in

Signals of selection in the mitogenome provide insights into adaptation mechanisms in heterogeneous habitats in a widely distributed pelagic fish

  • 1.

    Ballard, J. W. O. & Pichaud, N. Mitochondrial DNA: more than an evolutionary bystander. Funct. Ecol. 28, 218–231 (2014).

    Google Scholar 

  • 2.

    Morales, H. E. et al. Mitochondrial-nuclear interactions maintain a deep mitochondrial split in the face of nuclear gene flow. BioRxiv 1, 095596 (2016).

    Google Scholar 

  • 3.

    Wang, D. Molecular Basis for Adaptive Response to Environmental Toxicants or Stresses. In Molecular Toxicology in Caenorhabditis elegans (ed. Wang, D.) 411-428 (Springer (2019).

  • 4.

    Letts, J. A., Fiedorczuk, K. & Sazanov, L. A. The architecture of respiratory supercomplexes. Nature 537, 644–648 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Garvin, M. R., Bielawski, J. P. & Gharrett, A. J. Positive Darwinian selection in the piston that powers proton pumps in complex I of the mitochondria of Pacific salmon. Plos One 6, e24127 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Silva, G., Lima, F. P., Martel, P. & Castilho, R. Thermal adaptation and clinal mitochondrial DNA variation of European anchovy. P. Roy. Soc. Lond. B. Bio. 281, 20141093 (2014).

    Google Scholar 

  • 7.

    Scott, G. R. et al. Molecular evolution of cytochrome c oxidase underlies high-altitude adaptation in the bar-headed goose. Mol. Biol. Evol. 28, 351–363 (2010).

    PubMed  Google Scholar 

  • 8.

    Stier, A., Massemin, S. & Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B. 184, 1021–1029 (2014).

    CAS  PubMed  Google Scholar 

  • 9.

    Da Fonseca, R. R., Johnson, W. E., O’Brien, S. J., Ramos, M. J. & Antunes, A. The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics 9, 119 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Garvin, M. R., Thorgaard, G. H. & Narum, S. R. Differential expression of genes that control respiration contribute to thermal adaptation in redband trout Oncorhynchusmykiss gairdneri. Genome. Biol. Evol. 7, 1404–1414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Doi, A., Suzuki, H. & Matsuura, E. T. Genetic analysis of temperature-dependent transmission of mitochondrial DNA in. Drosophila. Heredity 82, 555–560 (1999).

    PubMed  Google Scholar 

  • 12.

    Brennan, R. S., Hwang, R., Tse, M., Fangue, N. A. & Whitehead, A. Local adaptation to osmotic environment in killifish, Fundulus heteroclitus, is supported by divergence in swimming performance but not by differences in excess post-exercise oxygen consumption or aerobic scope. Comp. Biochem. Phys. A. 196, 11–19 (2016).

    CAS  Google Scholar 

  • 13.

    Roxy, M. K., Ritika, K., Terray, P. & Masson, S. The curious case of Indian ocean warming. J. Climate. 27, 8501–8509 (2014).

    ADS  Google Scholar 

  • 14.

    Findlater, J. A major low level air current near the Indian Ocean during the northern summer. Q. J. Roy. Meteor. Soc. 95, 362–380 (1969).

    ADS  Google Scholar 

  • 15.

    Schott, F. A. & McCreary, J. P. Jr The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51, 1–123 (2001).

    ADS  Google Scholar 

  • 16.

    Smitha, B. R., Sanjeevan, V. N., Vimalkumar, K. G. & Ravichandran, C. On the upwelling off the southern tip and along the west coast of India. J. Coastal. Res. 24, 95–102 (2008).

    Google Scholar 

  • 17.

    Qasim, S. Z. Oceanography of the northern Arabian Sea. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 29, 1041–1068 (1982).

    CAS  Google Scholar 

  • 18.

    Prasanna Kumar, S. et al. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? Geophys. Res. Lett. 29, 88-1–88-4 (2002).

    Google Scholar 

  • 19.

    Shenoi, S. S. C., Shankar, D. & Shetye, S. R. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. J. Geophys. Res. 107, 3052 (2002).

    ADS  Google Scholar 

  • 20.

    Teske, P. R. et al. Thermalselection as a driver of marine ecologicalspeciation. Proc. R. Soc. B 286, 20182023 (2019).

    CAS  PubMed  Google Scholar 

  • 21.

    Garvin, M. R., Bielawski, J. P., Sazanov, L. A. & Gharrett, A. J. Review and meta-analysis of natural selection in mitochondrial complex I in metazoans. J. Zool. Syst. Evol. Res. 53, 1–17 (2015).

    Google Scholar 

  • 22.

    Lajbner, Z., Pnini, R., Camus, M. F., Miller, J. & Dowling, D. K. Experimental evidence that thermal selection shapes mitochondrial genome evolution. Sci. Rep. 8, 9500 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Devaraj, M. & Martosubroto, P. Small pelagic resources and their fisheries in the Asia-Pacific Region. Proceedings of APFIC working party on Marine Fisheries (RAP Publishers (1997).

  • 24.

    CMFRI. Annual report 2017–2018 (Central Marine Fisheries Research Institute (2018).

  • 25.

    Pereira, F. et al. Evidence for variable selective pressures at a large secondary structure of the human mitochondrial DNA control region. Mol. Biol. Evol. 25, 2759–2770 (2008).

    CAS  PubMed  Google Scholar 

  • 26.

    Miya, M. & Nishida, M. The mitogenomic contributions to molecular phylogenetics and evolution of fishes: a 15-year retrospect. Ichthyol. Res. 62, 29–36 (2015).

    Google Scholar 

  • 27.

    Katz, L. & Burge, C. B. Widespread selection for local RNA secondary structure in coding regions of bacterial genes. Genome Res. 13, 2042–2051 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Walberg, M. W. & Clayton, D. A. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA. Nucleic Acids Rese. 9, 5411–5421 (1981).

    CAS  Google Scholar 

  • 29.

    Munroe, T. A. & Priede, I. G. Sardinella longiceps (errata version published in 2017). The IUCN Red List of Threatened Species, 2010e, T154989A115258997 (2010).

  • 30.

    Peck, M. A., Reglero, P., Takahashi, M. & Catalan, I. A. Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations. Prog. Oceanogr. 116, 220–245 (2013).

    ADS  Google Scholar 

  • 31.

    Sato, M. et al. Coastal upwelling fronts as a boundary for planktivorous fish distributions. Mar. Ecol. Prog. Ser. 595, 171–186 (2018).

    ADS  CAS  Google Scholar 

  • 32.

    Checkley, D. M. Jr, Asch, R. G. & Rykaczewski, R. R. Climate, anchovy, and sardine. Annu. Rev. Mar. Sci. 9, 469–493 (2017).

    ADS  Google Scholar 

  • 33.

    Reiss, C. S., Checkley, D. M. Jr. & Bograd, S. J. Remotely sensed spawning habitat of Pacific sardine (Sardinops sagax) and Northern anchovy (Engraulis mordax) within the California Current. Fisheries Oceanogr. 17, 126–136 (2008).

    Google Scholar 

  • 34.

    Chatterjee, A. et al. A new atlas of temperature and salinity for the North Indian Ocean. J. Earth. Syst. Sci. 121, 559–593 (2012).

    ADS  Google Scholar 

  • 35.

    Harpending, H. C. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 66, 591–600 (1994).

    CAS  PubMed  Google Scholar 

  • 36.

    Fu, Y. X. & Li, W. H. Statistical tests f neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Zhu, J., Vinothkumar, K. R. & Hirst, J. Structure of mammalian respiratory complex I. Nature 536, 354–358 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Tsukihara, T. et al. Structures of Metal Sites of Oxidized Bovine Heart Cytochrome c Oxidase at 2.8AA. Science 269, 1069–1074 (1995).

    ADS  CAS  PubMed  Google Scholar 

  • 39.

    Crofts, A. R. The cytochrome bc 1 complex: function in the context of structure. Annu. Rev. Physiol. 66, 689–733 (2004).

    CAS  PubMed  Google Scholar 

  • 40.

    Li, Y., Park, J. S., Deng, J. H. & Bai, Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J. Bioenerg. Biomembr. 38, 283–291 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Sebastian, W., Sukumaran, S., Zacharia, P. U. & Gopalakrishnan, A. The complete mitochondrial genome and phylogeny of Indian oil sardine, Sardinella longiceps and Goldstripe Sardinella, Sardinella gibbosa from the Indian Ocean. Conserv. Genet. Resour. 10, 735–739 (2017).

    Google Scholar 

  • 42.

    Narvekar, J. et al. Winter‐time variability of the eastern Arabian Sea: A comparison between 2003 and 2013. Geophys. Res. Lett. 44, 6269–6277 (2017).

    ADS  Google Scholar 

  • 43.

    Sazanov, L. A. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell. Bio. 16, 375–388 (2015).

    CAS  Google Scholar 

  • 44.

    Caballero, S., Duchene, S., Garavito, M. F., Slikas, B. & Baker, C. S. Initial evidence for adaptive selection on the NADH subunit Two of freshwater dolphins by analyses of mitochondrial genomes. Plos One 10, e0123543 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Consuegra, S., John, E., Verspoor, E. & De Leaniz, C. G. Patterns of natural selection acting on the mitochondrial genome of a locally adapted fish species. Genet. Sel. Evol. 47, 1–10 (2015).

    CAS  Google Scholar 

  • 46.

    Jacobsen, M. W., Da Fonseca., R. R., Bernatchez, L. & Hansen, M. M. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish Coregonus ssp. Mol. Phylogenet. Evol. 95, 161–170 (2016).

    CAS  PubMed  Google Scholar 

  • 47.

    Teacher, A. G., Andre, C., Merila, J. & Wheat, C. W. Whole mitochondrial genome scan for population structure and selection in the Atlantic herring. BMC Evol. Biol. 12, 248 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Marshall, H. D., Coulson, M. W. & Carr, S. M. Near neutrality, rate heterogeneity, and linkage govern mitochondrial genome evolution in Atlantic cod (Gadus morhua) and other gadine fish. Mol. Biol. Evol. 26, 579–589 (2008).

    PubMed  Google Scholar 

  • 49.

    Beckstead, W. A., Ebbert, M. T., Rowe, M. J. & McClellan, D. A. Evolutionary pressure on mitochondrial cytochrome b is consistent with a role of CytbI7T affecting longevity during caloric restriction. Plos One 4, e5836 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Wenz, T. et al. Mutational analysis of cytochrome b at the ubiquinol oxidation site of yeast complex III. J. Biol. Chem. 282, 3977–3988 (2007).

    CAS  PubMed  Google Scholar 

  • 51.

    Osheroff, N. et al. The reaction of primate cytochromes c with cytochrome c oxidase. Analysis of the polarographic assay. J. Biol. Chem. 258, 5731–5738 (1983).

    CAS  PubMed  Google Scholar 

  • 52.

    Gershoni, M. et al. Disrupting mitochondrial–nuclear coevolution affects OXPHOS complex I integrity and impacts human health. Genome Biol. Evol. 6, 2665–2680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Dalziel, A. C., Moyes, C. D., Fredriksson, E. & Lougheed, S. C. Molecular evolution of cytochrome c oxidase in high-performance fish Teleostei: Scombroidei. J. Mol. Evol. 62, 319–331 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 54.

    Hauser, L. & Carvalho, G. R. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish. 9, 333–362 (2008).

    Google Scholar 

  • 55.

    Sukumaran, S., Sebastian, W. & Gopalakrishnan, A. Population genetic structure of Indian oil sardine, Sardinella longiceps along Indian coast. Gene 576, 372–378 (2016).

    CAS  PubMed  Google Scholar 

  • 56.

    Hauser, L., Turan, C. & Carvalho, G. Haplotype frequency distribution and discriminatory power of two mtDNA fragments in a marine pelagic teleost (Atlantic herring, Clupea harengus). Heredity 87, 621–630 (2001).

    CAS  PubMed  Google Scholar 

  • 57.

    Sebastian, W., Sukumaran, S., Zacharia, P. U. & Gopalakrishnan, A. Genetic population structure of Indian oil sardine, Sardinella longiceps assessed using microsatellite markers. Conserv. Genet. 18, 951–964 (2017).

    CAS  Google Scholar 

  • 58.

    Burton, R. S., Pereira, R. J. & Barreto, F. S. Cytonuclear genomic interactions and hybrid breakdown. Annu. Rev. Ecol. Evol. 44, 281–302 (2013).

    Google Scholar 

  • 59.

    Samuels, D. C., Schon, E. A. & Chinnery, P. F. Two direct repeats cause most human mtDNA deletions. Trends Genet. 20, 393–398 (2004).

    CAS  PubMed  Google Scholar 

  • 60.

    Mita, S. et al. Recombination via flanking direct repeats is a major cause of large-scale deletions of human mitochondrial DNA. Nucleic. Acids. Res. 18, 561–567 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Yasukawa, T., Yang, M. Y., Jacobs, H. T. & Holt, I. J. A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol. Cell. 18, 651–662 (2005).

    CAS  PubMed  Google Scholar 

  • 62.

    Slomovic, S., Laufer, D., Geiger, D. & Schuster, G. Poly-adenylation and degradation of human mitochondrial RNA: the prokaryotic past leaves its mark. Mol. Cell. Biol. 25, 6427–6435 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Ojala, D., Merkel, C., Gelfand, R. & Attardi, G. The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA. Cell 22, 393–403 (1980).

    CAS  PubMed  Google Scholar 

  • 64.

    Mignotte, F., Gueride, M., Champagne, A. M. & Mounolou, J. C. Direct repeats in the non-coding region of rabbit mitochondrial DNA: Involvement in the generation of intra-and inter-individual heterogeneity. Eur. J. Biochem. 194, 561–571 (1990).

    CAS  PubMed  Google Scholar 

  • 65.

    Melo-Ferreira, J. et al. The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression. Genome Biol. Evol. 6, 886–896 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Suissa, S. et al. Ancient mtDNA genetic variants modulate mtDNA transcription and replication. Plos Genet. 5, e1000474 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 67.

    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates Sunderland (2004).

  • 68.

    Thompson, J. N. Relentless Evolution (University of Chicago Press (2013).

  • 69.

    Jablonski, D. The tropics as a source of evolutionary novelty through geological time. Nature 364, 142–144 (1993).

    ADS  Google Scholar 

  • 70.

    Gillooly, J. F., Allen, A. P., West, G. B. & Brown, J. H. The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc. Natl. Acad. Sci. USA 102, 140–145 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 71.

    Dean, A. M., Lehman, C. & Yi, X. Fluctuating Selection in the Moran. Genetics 205, 1271–1283 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 72.

    Melbinger, A. & Vergassola, M. The Impact of Environmental Fluctuations on Evolutionary Fitness Functions. Sci. Rep. 5, 15211 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Fuentes, M. A. & Ferrada, E. Environmental Fluctuations and Their Consequences for the Evolution of Phenotypic Diversity. Aip. Conf. Proc. 5, 16 (2017).

    Google Scholar 

  • 74.

    Eddie, K. H. Ho & Aneil F. Agrawal. Mutation accumulation in selfing populations under fluctuating selection. The Society for the Study of Evolution. Evolution 72-9, 1759–1772 (2019).

    Google Scholar 

  • 75.

    Iftikar, F. I. & Hickey, A. J. Do mitochondria limit hot fish hearts? Understanding the role of mitochondrial function with heat stress in Notolabrus celidotus. Plos One 8, e64120 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Somero, G. N. Proteins and temperature. Annu. Rev. Physiol. 57, 43–68 (1995).

    CAS  PubMed  Google Scholar 

  • 77.

    Baris, T. Z., Crawford, D. L. & Oleksiak, M. F. “Acclimation and acute temperature effects on population differences in oxidative phosphorylation.”. Am. J. Physiol-Reg. I. 310, R185–R196 (2015).

    Google Scholar 

  • 78.

    Rion, S. & Kawecki, T. J. Evolutionary biology of starvation resistance: what we have learned from Drosophila. J. Evolution. Biol. 20, 1655–1664 (2007).

    CAS  Google Scholar 

  • 79.

    Ballard, J. W. O. & Melvin, R. G. Linking the mitochondrial genotype to the organismal phenotype. Mol. Ecol. 19, 1523–1539 (2010).

    CAS  PubMed  Google Scholar 

  • 80.

    Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V. & Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226 (2004).

    ADS  CAS  PubMed  Google Scholar 

  • 81.

    Solaini, G., Baracca, A., Lenaz, G. & Sgarbi, G. Hypoxia and mitochondrial oxidative metabolism. BBA-Bioenergetics 1797, 1171–1177 (2010).

    CAS  PubMed  Google Scholar 

  • 82.

    Berg, P. R. et al. Adaptation to low salinity promotes genomic divergence in Atlantic cod Gadus morhua. Genome Biol. Evol. 7, 1644–1663 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Foote, A. D. et al. Positive selection on the killer whale mitogenome. Biol. Lett-UK. 7, 116–118 (2011).

    CAS  Google Scholar 

  • 84.

    de Villemereuil, P., Gaggiotti, O. E., Mouterde, M. & Till-Bottraud, I. Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 3, 249–254 (2016).

    Google Scholar 

  • 85.

    Gueye, M., Kantoussan, J. & Tine, M. Common Garden Experiments Confirm the Impact of Salinity on Reproductive Traits that is Observed in Wild Populations of the Back-Chinned Tilapia Sarotherodon melanotheron. Int. J. Aquac. Fish. Sci. 2, 031–037 (2016).

    Google Scholar 

  • 86.

    DeTolla, L. J. et al. Guidelines for the care and use of fish in research. Ilar J. 1(37), 159–173 (1995).

    Google Scholar 

  • 87.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 89.

    Nei, M. Molecular Evolutionary Genetics (Columbia University Press, New York (1987).

  • 90.

    Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 91.

    Nei, M. & Gojobori, T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3, 418–426 (1986).

    CAS  PubMed  Google Scholar 

  • 92.

    Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  PubMed  Google Scholar 

  • 93.

    Posada, D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).

    CAS  PubMed  Google Scholar 

  • 94.

    Pond, S. L. K. & Frost, S. D. Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics 21, 2531–2533 (2005).

    CAS  PubMed  Google Scholar 

  • 95.

    Woolley, S., Johnson, J., Smith, M. J., Crandall, K. A. & McClellan, D. A. TreeSAAP: selection on amino acid properties using phylogenetic trees. Bioinformatics 19, 671–672 (2003).

    CAS  Google Scholar 

  • 96.

    McClellan, D. A. & Ellison, D. D. Assessing and improving the accuracy of detecting protein adaptation with the TreeSAAP analytical software. Int. J. Bioinformat. Res. Appl. 6, 11–17 (2010).

    Google Scholar 

  • 97.

    Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic. Acids. Res. 31, 3381–3385 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 98.

    Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Study: Reflecting sunlight to cool the planet will cause other global changes

    Integrative description of a new Dactylobiotus (Eutardigrada: Parachela) from Antarctica that reveals an intraspecific variation in tardigrade egg morphology