in

AMF communities associated to Vitis vinifera in an Italian vineyard subjected to integrated pest management at two different phenological stages

  • 1.

    Organisation, I. 2019 Statistical Report on World Vitiviniculture. (2019).

  • 2.

    Georgiev, V., Ananga, A. & Tsolova, V. Recent advances and uses of grape flavonoids as nutraceuticals. Nutrients 6, 391–415 (2014).

    Article  Google Scholar 

  • 3.

    Artero, A., Artero, A., Tarín, J. J. & Cano, A. The impact of moderate wine consumption on health. Maturitas 80, 3–13 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Vislocky, L. M. & Fernandez, M. L. Biomedical effects ofgrape products. Nutr. Rev. 68, 656–670 (2010).

    Article  Google Scholar 

  • 5.

    Torres, N., Antolín, M. C. & Goicoechea, N. Arbuscular Mycorrhizal Symbiosis as a Promising Resource for Improving Berry Quality in Grapevines Under Changing Environments. Front. Plant Sci. 9, (2018).

  • 6.

    Trouvelot, S. et al. Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron. Sustain. Dev. 35, 1449–1467 (2015).

    Article  Google Scholar 

  • 7.

    Gilbert, J. A., van der Lelie, D. & Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl. Acad. Sci. 111, 5–6 (2014).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Hodge, A., Helgason, T. & Fitter, A. H. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecol. 3, 267–273 (2010).

    Article  Google Scholar 

  • 9.

    Bona, E. et al. Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J. Proteomics 74, (2011).

  • 10.

    Lingua, G. et al. Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: A time course analysis. PLoS One 7, (2012).

  • 11.

    Degola, F. et al. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents. Plant Physiol. Biochem. 92, (2015).

  • 12.

    Bona, E. et al. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25, (2015).

  • 13.

    Bona, E. et al. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27, 1–11 (2017).

    CAS  Article  Google Scholar 

  • 14.

    Berta, G. et al. Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24, (2014).

  • 15.

    Baslam, M., Esteban, R., García-Plazaola, J. I. & Goicoechea, N. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl. Microbiol. Biotechnol. 97, 3119–3128 (2013).

    CAS  Article  Google Scholar 

  • 16.

    Bona, E. et al. Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Sci. Hortic. (Amsterdam). 234, (2018).

  • 17.

    Todeschini, V. et al. Impact of Beneficial Microorganisms on Strawberry Growth, Fruit Production, Nutritional Quality, and Volatilome. Front. Plant Sci. 9, 1–22 (2018).

    Article  Google Scholar 

  • 18.

    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. 111, 5266–5270 (2014).

    ADS  CAS  Article  Google Scholar 

  • 19.

    de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl. Acad. Sci. 110, 14296–14301 (2013).

    ADS  Article  Google Scholar 

  • 20.

    Gianinazzi, S., Gollotte, A. & Binet, M. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–530 (2010).

    Article  Google Scholar 

  • 21.

    Garcia, J. A. L., Barbas, C., Probanza, A., Barrientos, M. L. & Manero, F. J. G. Low molecular weight organic acids and fatty acids in root exudates of two Lupinus cultivars at flowering and fruiting stages. Phytochem. Anal. 12, 305–311 (2001).

    CAS  Article  Google Scholar 

  • 22.

    Holland, T. C., Bowen, P., Bogdanoff, C. & Hart, M. M. How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol. Fertil. Soils 50, 667–674 (2014).

    Article  Google Scholar 

  • 23.

    Linderman, R. G. & Davis, E. A. Comparative response of selected grapevine rootstocks and cultivars to inoculation with different mycorrhizal fungi. Am. J. Enol. Vitic. 52, 8–11 (2001).

    CAS  Google Scholar 

  • 24.

    Schreiner, R. P. Spatial and temporal variation of roots, arbuscular mycorrhizal fungi, and plant and soil nutrients in a mature Pinot Noir (Vitis vinifera L.) vineyard in Oregon, USA. 219–234, https://doi.org/10.1007/s11104-005-4895-0 (2005).

  • 25.

    Schreiner, R. P., Scagel, C. F. & Baham, J. Nutrient uptake and distribution in a mature ‘pinot noir’ vineyard. HortScience 41, 336–345 (2006).

    CAS  Article  Google Scholar 

  • 26.

    Likar, M., Hančević, K., Radić, T. & Regvar, M. Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza 23, 209–219 (2013).

    CAS  Article  Google Scholar 

  • 27.

    Turrini, A. et al. Protective green cover enhances soil respiration and native mycorrhizal potential compared with soil tillage in a high-density olive orchard in a long term study. 116, 70–78 (2017).

  • 28.

    Turrini, A., Agnolucci, M., Palla, M., Tomé, E. & Tagliavini, M. Species diversity and community composition of native arbuscular mycorrhizal fungi in apple roots are a ff ected by site and orchard management. 116, 42–54 (2017).

  • 29.

    Paul Schreiner, R. Effects of native and nonnative arbuscular mycorrhizal fungi on growth and nutrient uptake of ‘Pinot noir’ (Vitis vinifera L.) in two soils with contrasting levels of phosphorus. Appl. Soil Ecol. 36, 205–215 (2007).

    Article  Google Scholar 

  • 30.

    Schreiner, R. P. & Mihara, K. L. The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101, 599–611 (2009).

    Article  Google Scholar 

  • 31.

    Lumini, E., Orgiazzi, A., Borriello, R., Bonfante, P. & Bianciotto, V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ. Microbiol. 12, 2165–2179 (2010).

    CAS  PubMed  Google Scholar 

  • 32.

    Balestrini, R., Magurno, F., Walker, C., Lumini, E. & Bianciotto, V. Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environ. Microbiol. Rep. 2, 594–604 (2010).

    Article  Google Scholar 

  • 33.

    Likar, M., Stres, B., Rusjan, D., Potisek, M. & Regvar, M. Ecological and conventional viticulture gives rise to distinct fungal and bacterial microbial communities in vineyard soils. Appl. Soil Ecol. 113, 86–95 (2017).

    Article  Google Scholar 

  • 34.

    Zaller, J. G. et al. Herbicides in vineyards reduce grapevine root mycorrhization and alter soil microorganisms and the nutrient composition in grapevine roots, leaves, xylem sap and grape juice. 23215–23226 (2018).

  • 35.

    Novello, G. et al. The rhizosphere bacterial microbiota of Vitis vinifera cv. Pinot Noir in an integrated pest management vineyard. Front. Microbiol. 8, 1–11 (2017).

  • 36.

    ISTAT, Istituto Superiore di Statistica. (2018).

  • 37.

    Lindahl, B. D. et al. Methods Fungal community analysis by high-throughput sequencing of amplified markers – a user’s guide. New Phytol. 199, 288–299 (2013).

    CAS  Article  Google Scholar 

  • 38.

    Hart, M. et al. Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. Mycorrhiza 25, 359–376 (2015).

    CAS  Article  Google Scholar 

  • 39.

    Holland, T. C. et al. Evaluating the diversity of soil microbial communities in vineyards relative to adjacent native ecosystems. Appl. Soil Ecol. 100, 91–103 (2016).

    Article  Google Scholar 

  • 40.

    Doherty, J. H., Harris, C., Hartley, L. & the Ecological Society of America. TIEE is a project of the Education and Human Resources Committee of the Ecological Society of America. Teach. Issues Exp. Ecol. 7, (2011).

  • 41.

    Dumbrell, A. J. et al. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol. 190, 794–804 (2011).

    CAS  Article  Google Scholar 

  • 42.

    Bouamri, R., Dalpé, Y. & Serrhini, M. N. Effect of seasonal variation on arbuscular mycorrhizal fungi associated with date palm. Emirates J. Food Agric. 26, 977–986 (2014).

    Article  Google Scholar 

  • 43.

    Vargas-Gastélum, L. et al. Impact of seasonal changes on fungal diversity of a semi-arid ecosystem revealed by 454 pyrosequencing. FEMS Microbiol. Ecol. 91, fiv044 (2015).

    Article  Google Scholar 

  • 44.

    Cesaro, P. et al. Preferential colonization of Solanum tuberosum L. roots by the fungus Glomus intraradices in arable soil of a potato farming area. Appl. Environ. Microbiol. 74, 5776–5783 (2008).

  • 45.

    Berruti, A. et al. Arbuscular mycorrhizal fungi and their value for ecosystem management. Biodivers. – Dyn. Balanc. planet 159–191, dx.doi.org/10.5772/58231 (2014).

  • 46.

    Schreiner, R. P. Mycorrhizal colonization of grapevine rootstocks under field conditions. Am. J. Enol. Vitic. 54, 143–149 (2003).

    Google Scholar 

  • 47.

    Bona, E. et al. Metaproteomic characterization of the Vitis vinifera rhizosphere. 95, 1–16 (2019).

  • 48.

    Trouvelot, A., Kough, J. L. & Gianinazzi-Pearson, V. Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification functionelle. in Mycorrhizae: physiology and genetics 217–221 (1986).

  • 49.

    Farmer, M. J. et al. Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl. Soil Ecol. 35, 599–609 (2007).

    Article  Google Scholar 

  • 50.

    Ewing, B., Hillier, L., Wendl, M. & Green, P. Base-calling of automated sequencer traces usingPhred. I. Accuracy assessment. Genome Res. 8, 175–185 (1998).

    CAS  Article  Google Scholar 

  • 51.

    Krüger, M., Krüger, C., Walker, C., Stockinger, H. & Schüßler, A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular: Discovery Service for University of Essex. New Phytol. 193, 970–984 (2012).

    Article  Google Scholar 

  • 52.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 25, 3389–3402 (1997).

    CAS  Article  Google Scholar 

  • 53.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2018).

  • 54.

    Berlanas, C. et al. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards. Front. Microbiol. 10, 1–16 (2019).

  • 55.

    Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. L. & Schäfer, P. Challenges and approaches in microbiome. Research: From Fundamental to Applied. 9, 1–12 (2018).

  • 56.

    McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, (2013).

  • 57.

    Foster, Z. S. L., Sharpton, T. J. & Gru, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. 1–15, https://doi.org/10.5281/zenodo.158228 (2017).


  • Source: Ecology - nature.com

    MIT startup wraps food in silk for better shelf life

    Unlocking the secrets of a plastic-eater