Mylroie, J. E., Carew, J. L. & Moore, A. I. Blue holes: Definition and genesis. Carb. Evapor. 10, 225–233, https://doi.org/10.1007/BF03175407 (1995).
Canganella, F., Bianconi, G., Kato, C. & Gonzalez, J. Microbial ecology of submerged marine caves and holes characterized by high levels of hydrogen sulphide in Life in Extreme Environments (eds. Amils, R., Ellis-Evans, C. & Hinghofer-Szalkay, H.) 115-124 (Springer Dordrecht, https://doi.org/10.1007/978-1-4020-6285-8_7) (2006).
Seymour, J. R., Humphreys, W. F. & Mitchell, J. G. Stratification of the microbial community inhabiting an anchialine sinkhole. Aquatic Microbial Ecology 50, 11–24, https://doi.org/10.3354/ame01153 (2007).
Iliffe, T. M. & Kornicker, L. S. Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. Smithson Contrib. Mar. Sci. 38, 269–280 (2009).
Iliffe, T. M. Conservation of anchialine cave biodiversity in Hydrogeology and Biology of Post-Paleozoic Carbonate Aquifers (eds. Martin, J. B., Wicks, C. M. & Sasowsky, I. D.) 99-102 (Charles Town, Karst Waters Institute) (2002).
Li, T. G. et al. Three-dimensional (3D) morphology of Sansha Yongle Blue Hole in the South China Sea revealed by underwater remotely operated vehicle. Scientific Reports 8, 17122, https://doi.org/10.1038/s41598-018-35220-x (2018).
Goldstein, S. T. Foraminifera: A biological overview in Modern Foraminifera (ed. Sen Gupta, B. K.) 37-55 (Springer Dordrecht, https://doi.org/10.1007/0-306-48104-9_3) (1999).
Pawlowski, J. et al. Molecular evidence that Reticulomyxa filosa is a freshwater naked foraminifer. Journal of Eukaryotic Microbiology 46(6), 612–617, https://doi.org/10.1111/j.1550-7408.1999.tb05137.x (1999).
Holzmann, M., Habura, A., Giles, H., Bowser, S. S. & Pawlowski, J. Freshwater foraminiferans revealed by analysis of environmental DNA samples. J. Eukaryot. Microbiol 50(2), 135–139, https://doi.org/10.1111/j.1550-7408.2003.tb00248.x (2003).
Bernhard, J. M. & Sen Gupta, B. K. Foraminifera of oxygen-depleted environments in Modern Foraminifera (ed. Sen Gupta, B. K.) 201-216 (Dordrecht: Kluwer Academic Press) (1999).
Gooday, A. J., Bernhard, J. M., Levin, L. A. & Suhr, S. B. Foraminifera in the Arabian Sea oxygen minimum zone and other oxygen deficient settings: taxonomic composition, diversity, and relation to metazoan faunas. Deep-Sea Research II 47(1-2), 25–54, https://doi.org/10.1016/S0967-0645(99)00099-5 (2000).
Glock, N. et al. The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone. Biogeosciences 10, 4767–4783, https://doi.org/10.5194/bg-10-4767-2013 (2013).
Risgaard-Petersen, N. et al. Evidence for complete denitrification in a benthic foraminifer. Nature. 443, 93–96, https://doi.org/10.1038/nature05070 (2006).
Glock, N. et al. Metabolic preference of nitrate over oxygen as an electron acceptor in foraminifera from the Peruvian oxygen minimum zone. Proc. Natl. Acad. Sci. 116, 2860–2865, https://doi.org/10.1073/pnas.1813887116 (2019).
Høgslund, S., Revsbech, N. P., Cedhagen, T., Nielsen, L. P. & Gallardo, V. A. Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile. Journal of Experimental Marine Biology and Ecology. 359(2), 85–91, https://doi.org/10.1016/j.jembe.2008.02.015 (2008).
Piña-Ochoa, E. et al. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc. Natl. Acad. Sci. 107(3), 1148–1153, https://doi.org/10.1073/pnas.0908440107 (2010).
Bernhard, J. M. et al. Potential importance of physiologically diverse benthic foraminifera in sedimentary nitrate storage and respiration. Journal of Geophysical Research 117, 1851–1853, https://doi.org/10.1029/2012JG001949 (2012).
Bouchet, V. M. P., Alve, E., Rygg, B. & Telford, R. J. Benthic foraminifera provide a promising tool for ecological quality assessment of marine waters. Ecological Indicators 23, 66–75, https://doi.org/10.1016/j.ecolind.2012.03.011 (2012).
Pawlowski, J., Esling, P., Lejzerowicz, F., Cedhagen, T. & Wilding, T. A. Environmental monitoring through protist next-generation sequencing metabarcoding: assessing the impact of fish farming on benthic foraminifera communities. Molecular ecology resources 14(6), 1129–1140, https://doi.org/10.1111/1755-0998.12261 (2014).
Lei, Y. L. et al. Responses of benthic foraminifera to the 2011 oil spill in the Bohai Sea, PR China. Marine Pollution Bulletin 96(1), 245–260, https://doi.org/10.1016/j.marpolbul.2015.05.020 (2015).
Pawlowski, J. et al. Benthic monitoring of salmon farms in Norway using foraminiferal metabarcoding. Aquaculture Environment Interactions 8, 371–386, https://doi.org/10.3354/aei00182 (2016).
Dijkstra, N. et al. Benthic foraminifera as bio-indicators of chemical and physical stressors in Hammerfest harbor (Northern Norway). Marine Pollution Bulletin 114, 384–396, https://doi.org/10.1016/j.marpolbul.2016.09.053 (2017).
Jian, Z. M. et al. Benthic foraminiferal paleoceanography of the South China Sea over the last 40,000 years. Marine Geology 156, 159–186, https://doi.org/10.1016/S0025-3227(98)00177-7 (1999).
Kim, J.-M. & Kucera, M. Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15,000 years. Quaternary Science Reviews 19, 1067–1085, https://doi.org/10.1016/S0277-3791(99)00086-4 (2000).
Billups, K. & Schrag, D. P. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera. Paleoceanography 17(1), 1003, https://doi.org/10.1029/2000PA000567 (2002).
Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl. Acad. Sci 108, 13177–13182, https://doi.org/10.1073/pnas.1018426108 (2011).
Lejzerowicz, F. et al. Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biology Letters 9, 20130283, https://doi.org/10.1098/rsbl.2013.0283 (2013).
Lejzerowicz, F., Esling, P. & Pawlowski, J. Patchiness of deep-sea benthic Foraminifera across the Southern Ocean: insights from high-throughput DNA sequencing. Deep Sea Research Part II 108, 17–26, https://doi.org/10.1016/j.dsr2.2014.07.018 (2014).
Cordier, T., Barrenechea, I., Lejzerowicz, F., Reo, E. & Pawlowski, J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Progress in Oceanography 178, 102175, https://doi.org/10.1016/j.pocean.2019.102175 (2019).
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41(Database issue), D597-D604; https://doi.org/10.1093/nar/gks1160 (2013).
Xie, L. P. et al. Hydrochemical properties and chemocline of the Sansha Yongle Blue Hole in the South China Sea. Science of the Total Environment 649, 1281–1292, https://doi.org/10.1016/j.scitotenv.2018.08.333 (2019).
Hoeksema, B. W. Delineation of the Indo‐Malayan centre of maximum marine biodiversity: the coral triangle in Biogeography, Time, and Place: Distributions, Barriers, and Islands (ed. Renema, W.) 117-178 (Springer, Dordrecht) (2007).
Förderer, M., Rödder, D. & Langer, M. R. Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera. Scientific Reports 8, 8189, https://doi.org/10.1038/s41598-018-26598-9 (2018).
Schönfeld, J. et al. The FOBIMO (FOraminiferal BIo-MOnitoring) initiative—Towards a standardisedprotocol for soft-bottom benthic foraminiferal monitoring studies. Marine Micropaleontology 94-95, 1–13, https://doi.org/10.1016/j.marmicro.2012.06.001 (2012).
Weber, A. A.-T. & Pawlowski, J. Wide occurrence of SSU rDNA intragenomic polymorphism in Foraminifera and its implications for molecular species identification. Protist 165, 645–661, https://doi.org/10.1016/j.protis.2014.07.006 (2014).
Pawlowski, J., Lejzerowicz, F. & Esling, A. P. Next-generation environmental diversity surveys of foraminifera: preparing the future. The Biological Bulletin 227(2), 93–106 (2014).
Gooday, A. J. Soft-shelled foraminifera in meiofaunal samples from the bathyal northeast Atlantic. Sarsia 71, 275–287, https://doi.org/10.1080/00364827.1986.10419697 (1986).
Gooday, A. J. Epifaunal and shallow infaunal foraminiferal communities at three abyssal NE Atlantic sites subject to differing phytodetritus input regimes. Deep-Sea Research I 43(9), 1395–1421, https://doi.org/10.1016/S0967-0637(96)00072-6 (1996).
Gooday, A. J., Bett, B. J., Shires, R. & Lambshead, P. J. D. Deep-sea benthic foraminiferal diversity in the NE Atlantic and NW Arabian sea: a synthesis. Deep-Sea Research II 45(1-3), 165–201, https://doi.org/10.1016/S0967-0645(97)00041-6 (1998).
Gooday, A. J., Kitazato, H., Hori, S. & Toyofuku, T. Monothalamous soft-shelled foraminifera at an abyssal site in the North Pacific: a preliminary report. Journal of Oceanography 57, 377–384, https://doi.org/10.1023/A:101244701 (2001).
Goineau, A. & Gooday, A. J. Diversity and spatial patterns of foraminiferal assemblages in the eastern Clarion-Clipperton zone (abyssal eastern equatorial Pacific). Deep Sea Research I 149, 103036, https://doi.org/10.1016/j.dsr.2019.04.014 (2019).
Brandt, A. et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447, 307–311, https://doi.org/10.1038/nature05827 (2007).
Li, B. et al. Vertical variation in Vibrio community composition in Sansha Yongle Blue Hole and its ability to degrade macromolecules. Mar Life. Sci Technol 1, 1–13, https://doi.org/10.1007/s42995-019-00003-4 (2019).
Orsi, W. D. et al. Anaerobic metabolism of Foraminifera thriving below the seafloor. https://doi.org/10.1101/2020.03.26.009324 (2020).
Bernhard, J. M., Edgcomb, V. P., Casciotti, K. L., McIlvin, M. R. & Beaudoin, D. J. Denitrification likely catalyzed by endobionts in an allogromiid foraminifer. The ISME Journal 6, 951–960, https://doi.org/10.1038/ismej.2011.171 (2012).
Woehle, C. et al. A novel eukaryotic denitrification pathway in foraminifera. Current Biology 28, 2536–2543, https://doi.org/10.1016/j.cub.2018.06.027 (2018).
Kamp, A., Høgslund, S., Risgaard-Petersen, N. & Stief, P. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes. Front Microbiol 6, 1492, https://doi.org/10.3389/fmicb.2015.01492 (2015).
Lei, Y. L. & Li, T. G. Atlas of Benthic Foraminifera from China Seas the Bohai Sea and the Yellow Sea. 1-399 (Springer-Verlag GmSYBH Germany and Science Press, Beijing) (2016).
Lejzerowicz, F., Voltsky, I. & Pawlowski, J. Identifying active foraminifera in the Sea of Japan using metatranscriptomic approach. Deep Sea Research Part II 86-87, 214–220, https://doi.org/10.1016/j.dsr2.2012.08.008 (2013).
Esling, P., Lejzerowicz, F. & Pawlowski, J. Accurate multiplexing and filtering for high-throughput amplicon-sequencing. Nucleic acids research 43(5), 2513–2524, https://doi.org/10.1093/nar/gkv107 (2015).
Zhao, F. & Xu, K. D. Molecular diversity and distribution pattern of ciliates in sediments from deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas. Deep Sea Research Part I 116, 22-23; https://doi.org/10.1016/j.dsr.2016.07.007.
Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336, https://doi.org/10.1038/nmeth.f.303 (2010).
Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10(1), 57–59, https://doi.org/10.1038/nmeth.2276 (2013).
Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. https://doi.org/10.1101/081257 (2016).
Holzmann, M. & Pawlowski, J. An updated classification of rotaliid foraminifera based on ribosomal DNA phylogeny. Marine Micropaleontology 132, 18–34, https://doi.org/10.1016/j.marmicro.2017.04.002 (2017).
Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456, https://doi.org/10.1111/2041-210X.12613 (2016).
Wickham, H. Ggplot2: elegant graphics for data analysis. 1-260 (Springer Verlag) https://doi.org/10.1007/978-0-387-98141-3 (2016).
Oksanen, J. et al. Vegan: community ecology package https://cran.r-project.org/web/packages/vegan/vegan.pdf (2019).
Kolde, R. Pheatmap: pretty heatmaps https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf (2019).
Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. Statnet: Software tools for the representation, visualization, analysis and simulation of network data. Journal of Statistical Software 24(1), 1–11 (2008).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1), 1–9 (2001).
Source: Ecology - nature.com