in

The genome of pest Rhynchophorus ferrugineus reveals gene families important at the plant-beetle interface

  • 1.

    Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Naturalist 93, 145–159 (1959).

    Google Scholar 

  • 2.

    Mckenna, D. D. et al. The beetle tree of life reveals that Coleoptera survived end-P ermian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst. Entomol. 40, 835–880 (2015).

    Google Scholar 

  • 3.

    McKenna, D. D., Sequeira, A. S., Marvaldi, A. E. & Farrell, B. D. Temporal lags and overlap in the diversification of weevils and flowering plants. Proc. Natl Acad. Sci. USA 106, 7083–7088 (2009).

    CAS  PubMed  Google Scholar 

  • 4.

    Rugman-Jones, P. F., Hoddle, C. D., Hoddle, M. S., & Stouthamer, R. The lesser of two weevils: molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLoS ONE 8, e78379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    EPPO. List of biological control agents widely used in the EPPO region. EPPO Bull. 32, 447–461 (2002).

    Google Scholar 

  • 6.

    El-Sabea, A. M., Faleiro, J. & Abo-El-Saad, M. M. The threat of red palm weevil Rhynchophorus ferrugineus to date plantations of the Gulf region in the Middle-East: an economic perspective. Outlooks Pest Manag. 20, 131–134 (2009).

    Google Scholar 

  • 7.

    Giblin-Davis, R. M. Borers of palms. In Insects on Palms (eds. Howard, F. W., Moore, D, Giblin-Davis, R. M., & Abad, R. G.) 267–304. (CABI Publishing, Wallingford, GB, 2001).

  • 8.

    Zhu, F., Moural, T. W., Nelson, D. R. & Palli, S. R. A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s. Sci. Rep. 6, 20421 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Guillet, G., Lavigne, M.-È., Philogène, B. J. & Arnason, J. T. Behavioral adaptations of two phytophagous insects feeding on two species of phototoxic Asteraceae. J. Insect Behav. 8, 533–546 (1995).

    Google Scholar 

  • 10.

    Panini, M., Manicardi, G. C., Moores, G. & Mazzoni, E. An overview of the main pathways of metabolic resistance in insects. Invertebr. Survival J. 13, 326–335 (2016).

    Google Scholar 

  • 11.

    AlJabr, A. M., Hussain, A. & Rizwan-ul-haq, M. Toxin-Pathogen synergy reshaping detoxification and antioxidant defense mechanism of Oligonychus afrasiaticus (McGregor). Molecules 23, 1978 (2018).

    PubMed Central  Google Scholar 

  • 12.

    Kaplanoglu, E., Chapman, P., Scott, I. M. & Donly, C. Overexpression of a cytochrome P450 and a UDP-glycosyltransferase is associated with imidacloprid resistance in the Colorado potato beetle, Leptinotarsa decemlineata. Sci. Rep. 7, 1–10 (2017).

    CAS  Google Scholar 

  • 13.

    Wu, Q. et al. Heterologous expression of a Glyoxalase I gene from sugarcane confers tolerance to several environmental stresses in bacteria. PeerJ 6, e5873 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev. Entomol. 52, 231–253 (2007).

    PubMed  Google Scholar 

  • 15.

    Dermauw, W. et al. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc. Natl Acad. Sci. USA 110, E113–E122 (2013).

    CAS  PubMed  Google Scholar 

  • 16.

    Vatanparast, M., Hosseininaveh, V., Ghadamyari, M. & Sajjadian, S. M. Plant cell wall degrading enzymes, pectinase and cellulase, in the digestive system of the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Plant Prot. Sci. 50, 190–198 (2014).

    CAS  Google Scholar 

  • 17.

    Pauchet, Y., Wilkinson, P., & Chauhan, R. Diversity of beetle genes encoding novel plant cell wall degrading enzymes. PLoS ONE 5, e15635 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Scully, E. D. et al. Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS ONE 8, e73827 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Kirsch, R. et al. Horizontal gene transfer and functional diversification of plant cell wall degrading polygalacturonases: key events in the evolution of herbivory in beetles. Insect Biochem. Mol. Biol. 52, 33–50 (2014).

    CAS  PubMed  Google Scholar 

  • 20.

    Ohtoko, K. et al. Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Extremophiles 4, 343–349 (2000).

    CAS  PubMed  Google Scholar 

  • 21.

    Todaka, N. et al. Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS ONE 5, e8636 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Sethi, A. et al. A GHF7 cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficient lignocellulose processing by host enzymes. Arch. insect Biochem. Physiol. 84, 175–193 (2013).

    CAS  PubMed  Google Scholar 

  • 23.

    Calderón-Cortés, N., Quesada, M., Watanabe, H., Cano-Camacho, H. & Oyama, K. Endogenous plant cell wall digestion: a key mechanism in insect evolution. Annu. Rev. Ecol. Evol. Syst. 43, 45–71 (2012).

    Google Scholar 

  • 24.

    Yin, A. et al. Transcriptomic study of the red palm weevil Rhynchophorus ferrugineus embryogenesis. Insect Sci. 22, 65–82 (2015).

    CAS  PubMed  Google Scholar 

  • 25.

    Antony, B. et al. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genom. 17, 69 (2016).

    Google Scholar 

  • 26.

    Wang, L. et al. A large-scale gene discovery for the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Insect Sci. 20, 689–702 (2013).

    CAS  PubMed  Google Scholar 

  • 27.

    Bartlett, A. C. & Rananavare, H. Karyotype and sperm of the red palm weevil (Coleoptera: Curculionidae). Ann. Entomological Soc. Am. 76, 1011–1013 (1983).

    Google Scholar 

  • 28.

    Li, F. et al. Insect genomes: progress and challenges. Insect Mol. Biol. 28, 739–758 (2019).

    CAS  PubMed  Google Scholar 

  • 29.

    Biemont, C. Genome Size Evolution: Within-species Variation in Genome Size (Nature Publishing Group, 2008).

  • 30.

    Kelly, L. J. et al. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. N. Phytologist 208, 596–607 (2015).

    CAS  Google Scholar 

  • 31.

    Ragland, G. J. et al. Differences in performance and transcriptome-wide gene expression associated with R hagoletis (Diptera:Tephritidae) larvae feeding in alternate host fruit environments. Mol. Ecol. 24, 2759–2776 (2015).

    CAS  PubMed  Google Scholar 

  • 32.

    Eyres, I. et al. Differential gene expression according to race and host plant in the pea aphid. Mol. Ecol. 25, 4197–4215 (2016).

    CAS  PubMed  Google Scholar 

  • 33.

    Antony, B., Johny, J. & Aldosari, S. A. Silencing the odorant binding protein RferOBP1768 reduces the strong preference of palm weevil for the major aggregation pheromone compound ferrugineol. Front. Physiol. 9, 252 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 34.

    Consortium, T. G. S. The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949 (2008).

    Google Scholar 

  • 35.

    Mack, P. D., Kapelnikov, A., Heifetz, Y. & Bender, M. Mating-responsive genes in reproductive tissues of female Drosophila melanogaster. Proc. Natl Acad. Sci. USA 103, 10358–10363 (2006).

    CAS  PubMed  Google Scholar 

  • 36.

    Sarov-Blat, L., So, W. V., Liu, L. & Rosbash, M. The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior. Cell 101, 647–656 (2000).

    CAS  PubMed  Google Scholar 

  • 37.

    Massari, M. E. & Murre, C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20, 429–440 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Jones, S. An overview of the basic helix-loop-helix proteins. Genome Biol. 5, 226 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Liu, A. et al. A genome-wide identification and analysis of the basic helix-loop-helix transcription factors in the ponerine ant, Harpegnathos saltator. BMC Evolut. Biol. 12, 165 (2012).

    CAS  Google Scholar 

  • 40.

    Moriyama, M. et al. Ecdysteroid promotes cell cycle progression in the Bombyx wing disc through activation of c-Myc. Insect Biochem. Mol. Biol. 70, 1–9 (2016).

    CAS  PubMed  Google Scholar 

  • 41.

    Sillam-Dussès, D. et al. The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility. Open Biol. 6, 160080 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Syvanen, M., Zhou, Z., Wharton, J., Goldsbury, C. & Clark, A. Heterogeneity of the glutathione transferase genes encoding enzymes responsible for insecticide degradation in the housefly. J. Mol. Evol. 43, 236–240 (1996).

    CAS  PubMed  Google Scholar 

  • 43.

    Zhou, Z.-H. & Syvanen, M. A complex glutathione transferase gene family in the housefly Musca domestica. Mol. Gen. Genet. 256, 187–194 (1997).

    CAS  PubMed  Google Scholar 

  • 44.

    Walters, K. B., Grant, P. & Johnson, D. L. Evolution of the GST omega gene family in 12 Drosophila species. J. Heredity 100, 742–753 (2009).

    CAS  Google Scholar 

  • 45.

    Shi, H. et al. Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics 100, 327–335 (2012).

    CAS  PubMed  Google Scholar 

  • 46.

    Bergé, J., Feyereisen, R. & Amichot, M. Cytochrome P450 monooxygenases and insecticide resistance in insects. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 353, 1701–1705 (1998).

    Google Scholar 

  • 47.

    Adolfi, A. et al. Functional genetic validation of key genes conferring insecticide resistance in the major African malaria vector, Anopheles gambiae. Proc. Natl Acad. Sci. USA 116, 25764–25772 (2019).

    CAS  PubMed  Google Scholar 

  • 48.

    Xue, J. et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 15, 521 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Genta, F. A., Bragatto, I., Terra, W. R. & Ferreira, C. Purification, characterization and sequencing of the major β-1, 3-glucanase from the midgut of Tenebrio molitor larvae. Insect Biochem. Mol. Biol. 39, 861–874 (2009).

    CAS  PubMed  Google Scholar 

  • 50.

    Remnant, E. J. et al. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 110, 14705–14710 (2013).

    CAS  PubMed  Google Scholar 

  • 51.

    Dale, R. et al. Identification of ion channel genes in the Acyrthosiphon pisum genome. Insect Mol. Biol. 19, 141–153 (2010).

    CAS  PubMed  Google Scholar 

  • 52.

    Khatri, B. S. & Burt, A. Robust estimation of recent effective population size from number of independent origins in soft sweeps. Mol. Biol. Evol. 36, 2040–2052 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Pauchet, Y. & Heckel, D. G. The genome of the mustard leaf beetle encodes two active xylanases originally acquired from bacteria through horizontal gene transfer. Proc. R. Soc. B: Biol. Sci. 280, 20131021 (2013).

    Google Scholar 

  • 54.

    Blaxter, M. Symbiont genes in host genomes: fragments with a future? Cell Host Microbe 2, 211–213 (2007).

    CAS  PubMed  Google Scholar 

  • 55.

    Bacic, A., Harris, P. J. & Stone, B. A. Structure and function of plant cell walls. Biochem. Plants 14, 297–371 (1988).

    CAS  Google Scholar 

  • 56.

    Fang, C. et al. Hydrothermal pretreatment of date palm (Phoenix dactylifera L.) leaflets and rachis to enhance enzymatic digestibility and bioethanol potential. Biomed. Res. Int. 2015, 216454 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Henrissat, B. & Bairoch, A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781–788 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Wheat, C. W. & Wahlberg, N. Phylogenomic insights into the Cambrian explosion, the colonization of land and the evolution of flight in Arthropoda. Syst. Biol. 62, 93–109 (2013).

    PubMed  Google Scholar 

  • 59.

    Natri, H. M., Shikano, T. & Merilä, J. Progressive recombination suppression and differentiation in recently evolved neo-sex chromosomes. Mol. Biol. Evolution 30, 1131–1144 (2013).

    CAS  Google Scholar 

  • 60.

    Canapa, A., Barucca, M., Biscotti, M. A., Forconi, M. & Olmo, E. Transposons, genome size, and evolutionary insights in animals. Cytogenetic Genome Res. 147, 217–239 (2015).

    Google Scholar 

  • 61.

    Burns, K. H. & Boeke, J. D. Human transposon tectonics. Cell 149, 740–752 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    PubMed  Google Scholar 

  • 63.

    Pritham, E. J., Feschotte, C. & Wessler, S. R. Unexpected diversity and differential success of DNA transposons in four species of entamoeba protozoans. Mol. Biol. Evol. 22, 1751–1763 (2005).

    CAS  PubMed  Google Scholar 

  • 64.

    Heidel-Fischer, H. M. & Vogel, H. Molecular mechanisms of insect adaptation to plant secondary compounds. Curr. Opin. insect Sci. 8, 8–14 (2015).

    Google Scholar 

  • 65.

    Faddeeva-Vakhrusheva, A. et al. Gene family evolution reflects adaptation to soil environmental stressors in the genome of the collembolan Orchesella cincta. Genome Biol. Evolu. 8, 2106–2117 (2016).

    CAS  Google Scholar 

  • 66.

    Krupp, J. J. et al. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr. Biol. 18, 1373–1383 (2008).

    CAS  PubMed  Google Scholar 

  • 67.

    Gunawardena, N. E. et al. Host attractants for red weevil, Rhynchophorus ferrugineus: Identification, electrophysiological activity, and laboratory bioassay. J. Chem. Ecol. 24, 425–437 (1998).

    CAS  Google Scholar 

  • 68.

    Ortelli, F., Rossiter, L. C., Vontas, J., Ranson, H. & Hemingway, J. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochemical J. 373, 957–963 (2003).

    CAS  Google Scholar 

  • 69.

    Lumjuan, N. et al. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem. Mol. Biol. 41, 203–209 (2011).

    CAS  PubMed  Google Scholar 

  • 70.

    Wakil, W. et al. Resistance to commonly used insecticides and phosphine fumigant in red palm weevil, Rhynchophorus ferrugineus (Olivier) in Pakistan. PLoS ONE 13, e0192628 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Gotoh, O. Evolution and differentiation of P-450 genes in Cytochrome P-450 (eds Omura, T., Ishimura, Y., & Fujii-Kuriyama, Y.) 207–223 (Kodansha, Tokyo, 1993).

  • 72.

    Feyereisen, R. Evolution of Insect P450 (Portland Press Ltd., 2006).

  • 73.

    Yu, L. et al. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.). Sci. Rep. 5, 8952 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Lao, S.-H. et al. Genomic and transcriptomic insights into the cytochrome P450 monooxygenase gene repertoire in the rice pest brown planthopper, Nilaparvata lugens. Genomics 106, 301–309 (2015).

    CAS  PubMed  Google Scholar 

  • 75.

    Aldawood, A., Alsagan, F., Altuwariqi, H., Almuteri, A. & Rasool, K. Red palm weevil chemical treatments on date palms in Saudi Arabia: results of extensive experimentations. In Colloque méditerranéen sur les ravageurs des palmiers, Nice, France, 16–18 Janvier 2013 (Association Française de Protection des Plantes (AFPP), 2013).

  • 76.

    Diester-Haass, L., Billups, K., Lear, C. Productivity changes across the mid-Pleistocene climate transition. Earth-Sci. Rev. 179. https://doi.org/10.1016/j.earscirev.2018.02.016 (2018).

  • 77.

    Ferry, M. & Gomez, S. The red palm weevil in the Mediterranean area. Palms 46, 172–178 (2002).

    Google Scholar 

  • 78.

    El-Ezaby, F., Khalifa, O., & El-Assal, A. Integrated pest management for the control of red palm weevil Rhynchphorus ferrugineus Oliv in the United Arab Emirates, Eastern region, Al Ain. In Proceedings of 1st International Conference on Date Palms, Mar (1998).

  • 79.

    Petit, N. & Barbadilla, A. Selection efficiency and effective population size in Drosophila species. J. Evolut. Biol. 22, 515–526 (2009).

    CAS  Google Scholar 

  • 80.

    Felsenstein, J. Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 68, 581 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Murphy, S. & Briscoe, B. The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. Biocontrol News Inf. 20, 35N–46N (1999).

    Google Scholar 

  • 82.

    Eyun, S.-I. et al. Molecular evolution of glycoside hydrolase genes in the western corn rootworm (Diabrotica virgifera virgifera). PLoS ONE 9, e94052 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 83.

    Song, J. M. et al. Molecular and biochemical characterizations of a novel arthropod endo-β-1, 3-glucanase from the Antarctic springtail, Cryptopygus antarcticus, horizontally acquired from bacteria. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 155, 403–412 (2010).

    Google Scholar 

  • 84.

    McKenna, D. D. et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 17, 227 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 85.

    Galbraith, D. W., Harkins, K. R., Maddox, J. M., Ayres, N. M., Sharma, D. P. & Firoozabady, E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220, 1049–1051 (1983).

    CAS  PubMed  Google Scholar 

  • 86.

    Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 87.

    Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput Biol. Bioinform. 10, 645–656 (2013).

    PubMed  Google Scholar 

  • 88.

    Tempel, S. Using and understanding RepeatMasker. In Mobile Genetic Elements (Springer, 2012).

  • 89.

    Team RC. R: A language and environment for statistical computing. Computing https://doi.org/10.1890/0012-9658(2002)083[3097:CFHIWS]2.0.CO (2013).

  • 90.

    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    PubMed  Google Scholar 

  • 91.

    Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 92.

    Bartenhagen, C. & Dugas, M. Robust and exact structural variation detection with paired-end and soft-clipped alignments: SoftSV compared with eight algorithms. Brief. Bioinform. 17, 51–62 (2016).

    PubMed  Google Scholar 

  • 93.

    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 94.

    Nowell, R. W. et al. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species. PLoS Biol. 16, e2004830 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 95.

    Cole, T. J. & Brewer, M. S. FUSTr: a tool to find gene Families Under Selection in Transcriptomes. PeerJ 6, e4234 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 96.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  PubMed  Google Scholar 

  • 97.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  • 98.

    Harris, R. S. Improved pairwise Alignmnet of genomic DNA. Ph.D. Thesis, The Pennsylvania State University (2007).

  • 99.

    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).

    Google Scholar 

  • 100.

    Giblin-Davis, R. M., Faleiro, J. R., Jacas, J. A., Peña, J. E., & Vidyasagar, P. Biology and management of the red palm weevil, Rhynchophorus ferrugineus. In Peña JE (ed) Potential Invasive Pests of Agricultural Crops. CABI 1–34 (2013).


  • Source: Ecology - nature.com

    Publisher Correction: Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula

    Pooled samples and eDNA-based detection can facilitate the “clean trade” of aquatic animals