in

Methane, arsenic, selenium and the origins of the DMSO reductase family

  • 1.

    Schoepp-Cothenet, B. et al. The ineluctable requirement for the trans-iron elements molybdenum and/or tungsten in the origin of life. Sci. Rep. 2, 263 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Nitschke, W. & Russell, M. J. Beating the acetyl coenzyme A-pathway to the origin of life. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120258 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Schoepp-Cothenet, B. et al. On the universal core of bioenergetics. Biochim. Biophys. Acta 1827, 79–93 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Sousa, F. L. et al. Early bioenergetic evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20130088 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Grimaldi, S., Schoepp-Cothenet, B., Ceccaldi, P., Guigliarelli, B. & Magalon, A. The prokaryotic Mo/W-bisPGD enzymes family: A catalytic workhorse in bioenergetic. Biochim. Biophys. Acta 1827, 1048–1085 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Abin, C. A. & Hollibaugh, J. T. Transcriptional response of the obligate anaerobe Desulfuribacillus stibiiarsenatis MLFW-2T to growth on antimonate and other terminal electron acceptors. Environ. Microbiol. 21, 618–630 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Shi, L.-D. et al. Multi-omics reveal various potential antimonate reductases from phylogenetically diverse microorganisms. Appl. Microbiol. Biotechnol. 103, 9119–9129 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 8.

    Bilous, P. T., Cole, S. T., Anderson, W. F. & Weiner, J. H. Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulphoxide reductase of Escherichia coli. Mol. Microbiol. 2, 785–795 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Weiner, J. H., MacIsaac, D. P., Bishop, R. E. & Bilous, P. T. Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. J. Bacteriol. 170, 1505–1510 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Cammack, R. & Weiner, J. H. Electron paramagnetic resonance spectroscopic characterization of dimethyl sulfoxide reductase of Escherichia coli. Biochemistry 29, 8410–8416 (1990).

    CAS  Google Scholar 

  • 11.

    Schindelin, H., Kisker, C., Hilton, J., Rajagopalan, K. V. & Rees, D. C. Crystal structure of DMSO reductase: Redox-linked changes in molybdopterin coordination. Science 272, 1615–1621 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Schneider, F. et al. Crystal structure of dimethyl sulfoxide reductase from Rhodobacter capsulatus at 1.88 Å resolution. J. Mol. Biol. 263, 53–69 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Rothery, R. A., Workun, G. J. & Weiner, J. H. The prokaryotic complex iron–sulfur molybdoenzyme family. Biochim. Biophys. Acta 1778, 1897–1929 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Hille, R., Hall, J. & Basu, P. The mononuclear molybdenum enzymes. Chem. Rev. 114, 3963–4038 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    McEwan, A. G., Ridge, J. P., McDevitt, C. A. & Hugenholtz, P. The DMSO reductase family of microbial molybdenum enzymes: Molecular properties and role in the dissimilatory reduction of toxic elements. Geomicrobiol. J. 19, 3–21 (2002).

    CAS  Google Scholar 

  • 16.

    Sparacino-Watkins, C., Stolz, J. F. & Basu, P. Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 43, 676–706 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Sforna, M. C. et al. Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nat. Geosci. 7, 811–815 (2014).

    ADS  CAS  Google Scholar 

  • 18.

    Stolz, J. F., Basu, P., Santini, J. M. & Oremland, R. S. Arsenic and selenium in microbial metabolism. Annu. Rev. Microbiol. 60, 107–130 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Zargar, K., Hoeft, S., Oremland, R. & Saltikov, C. W. Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J. Bacteriol. 192, 3755–3762 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Zargar, K. et al. ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ. Microbiol. 14, 1635–1645 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Kulp, T. R. et al. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake California. Science 321, 967–970 (2008).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Stolz, J. F. Gaia and her microbiome. FEMS Microbiol. Ecol. 93, flw247 (2017).

    Google Scholar 

  • 23.

    Oremland, R. S., Saltikov, C. W., Wolfe-Simon, F. & Stolz, J. F. Arsenic in the evolution of Earth and extraterrestrial ecosystems. Geomicrobiol. J. 26, 522–536 (2009).

    CAS  Google Scholar 

  • 24.

    Lebrun, E. et al. Arsenite oxidase, an ancient bioenergetic enzyme. Mol. Biol. Evol. 20, 686–693 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Duval, S., Ducluzeau, A.-L., Nitschke, W. & Schoepp-Cothenet, B. Enzyme phylogenies as markers for the oxidation state of the environment: The case of respiratory arsenate reductase and related enzymes. BMC Evol. Biol. 8, 206 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    van Lis, R., Nitschke, W., Duval, S. & Schoepp-Cothenet, B. Arsenics as bioenergetic substrates. Biochim. Biophys. Acta 1827, 176–188 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Ducluzeau, A.-L. et al. Was nitric oxide the first deep electron sink?. Trends Biochem. Sci. 34, 9–15 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 28.

    Harel, A., Häggblom, M. M., Falkowski, P. G. & Yee, N. Evolution of prokaryotic respiratory molybdoenzymes and the frequency of their genomic co-occurrence. FEMS Microbiol. Ecol. 92, 187 (2016).

    Google Scholar 

  • 29.

    Edwardson, C. F. & Hollibaugh, J. T. Metatranscriptomic analysis of prokaryotic communities active in sulfur and arsenic cycling in Mono Lake, California, USA. ISME J. 11, 2195–2208 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Huelsenbeck, J. P. & Crandall, K. A. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst. 28, 437–466 (1997).

    Google Scholar 

  • 32.

    Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    CAS  Google Scholar 

  • 33.

    Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 1056–1060 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Mukherjee, S. et al. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat. Biotechnol. 35, 676–683 (2017).

    CAS  Google Scholar 

  • 35.

    Krafft, T. et al. Cloning and nucleotide sequence of the psrA gene of Wolinella succinogenes polysulphide reductase. Eur. J. Biochem. 206, 503–510 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Heinzinger, N. K., Fujimoto, S. Y., Clark, M. A., Moreno, M. S. & Barrett, E. L. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J. Bacteriol. 177, 2813–2820 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Wells, M. et al. Respiratory selenite reductase from Bacillus selenitireducens strain MLS10. J. Bacteriol. 201, e00614-e618 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Hensel, M., Hinsley, A. P., Nikolaus, T., Sawers, G. & Berks, B. C. The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol. Microbiol. 32, 275–287 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Kuroda, M. et al. Molecular cloning and characterization of the srdBCA operon, encoding the respiratory selenate reductase complex, from the selenate-reducing bacterium Bacillus selenatarsenatis SF-1. J. Bacteriol. 193, 2141–2148 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Cozen, A. E. et al. Transcriptional map of respiratory versatility in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. J. Bacteriol. 191, 782–794 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Wagner, T., Ermler, U. & Shima, S. The methanogenic CO2 reducing-and-fixing enzyme is bifunctional and contains 46 [4Fe–4S] clusters. Science 354, 114–117 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Sawers, G. The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Van Leeuwenhoek 66, 57–88 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Jormakka, M., Törnroth, S., Byrne, B. & Iwata, S. Molecular basis of proton motive force generation: Structure of formate dehydrogenase-N. Science 295, 1863–1868 (2002).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Raaijmakers, H. et al. Gene sequence and the 1.8 Å crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure 10, 1261–1272 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Boyington, J. C., Gladyshev, V. N., Khangulov, S. V., Stadtman, T. C. & Sun, P. D. Crystal structure of formate dehydrogenase H: Catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275, 1305–1308 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Khangulov, S. V., Gladyshev, V. N., Dismukes, G. C. & Stadtman, T. C. Selenium-containing formate dehydrogenase H from Escherichia coli: A molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer. Biochemistry 37, 3518–3528 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Oh, J. I. & Bowien, B. Structural analysis of the fds operon encoding the NAD+-linked formate dehydrogenase of Ralstonia eutropha. J. Biol. Chem. 273, 26349–26360 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Niks, D., Duvvuru, J., Escalona, M. & Hille, R. Spectroscopic and kinetic properties of the molybdenum-containing, NAD+-dependent formate dehydrogenase from Ralstonia eutropha. J. Biol. Chem. 291, 1162–1174 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Yu, X., Niks, D., Mulchandani, A. & Hille, R. Efficient reduction of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). J. Biol. Chem. 292, 16872–16879 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Stock, T. & Rother, M. Selenoproteins in Archaea and Gram-positive bacteria. Biochim. Biophys. Acta 1790, 1520–1532 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Luque-Almagro, V. M. et al. Bacterial nitrate assimilation: Gene distribution and regulation. Biochem. Soc. Trans. 39, 1838–1843 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Glaser, P., Danchin, A., Kunst, F., Zuber, P. & Nakano, M. M. Identification and isolation of a gene required for nitrate assimilation and anaerobic growth of Bacillus subtilis. J. Bacteriol. 177, 1112–1115 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Martínez-Espinosa, R. M., Marhuenda-Egea, F. C. & Bonete, M. J. Assimilatory nitrate reductase from the haloarchaeon Haloferax mediterranei: Purification and characterisation. FEMS Microbiol. Lett. 204, 381–385 (2001).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Kilic, V., Kilic, G. A., Kutlu, H. M. & Martínez-Espinosa, R. M. Nitrate reduction in Haloferax alexandrinus: The case of assimilatory nitrate reductase. Extremophiles 21, 551–561 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Ruiz, B. et al. The nitrate assimilatory pathway in Sinorhizobium meliloti: Contribution to NO production. Front. Microbiol. 10, 1526 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Hidalgo-García, A. et al. Rhizobium etli produces nitrous oxide by coupling the assimilatory and denitrification pathways. Front. Microbiol. 10, 980 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Flores, E., Frías, J. E., Rubio, L. M. & Herrero, A. Photosynthetic nitrate assimilation in cyanobacteria. Photosyn. Res. 83, 117–133 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Ordoñez, O. F., Rasuk, M. C., Soria, M. N., Contreras, M. & Farías, M. E. Haloarchaea from the Andean Puna: Biological role in the energy metabolism of arsenic. Microb. Ecol. 76, 695–705 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Härtig, C. et al. Chemolithotrophic growth of the aerobic hyperthermophilic bacterium Thermocrinis ruber OC 14/7/2 on monothioarsenate and arsenite. FEMS Microbiol. Ecol. 90, 747–760 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Svetlitshnyi, V., Rainey, F. & Wiegel, J. Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int. J. Syst. Bacteriol. 46, 1131–1137 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Bult, C. J. et al. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Slesarev, A. I. et al. The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens. Proc. Natl. Acad. Sci. USA 99, 4644–4649 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Hendrickson, E. L. et al. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J. Bacteriol. 186, 6956–6969 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Andreesen, J. R. & Ljungdahl, L. G. Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: Purification and properties. J. Bacteriol. 120, 6–14 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 68.

    Graentzdoerffer, A., Rauh, D., Pich, A. & Andreesen, J. R. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase. Arch. Microbiol. 179, 116–130 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Jones, J. B., Dilworth, G. L. & Stadtman, T. C. Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii. Arch. Biochem. Biophys. 195, 255–260 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Wood, G. E., Haydock, A. K. & Leigh, J. A. Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. J. Bacteriol. 185, 2548–2554 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Costa, C., Teixeira, M., LeGall, J., Moura, J. J. G. & Moura, I. Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: Isolation and spectroscopic characterization of the active sites (heme, iron-sulfur centers and molybdenum). JBIC 2, 198–208 (1997).

    CAS  Google Scholar 

  • 72.

    Zhang, Y., Romero, H., Salinas, G. & Gladyshev, V. N. Dynamic evolution of selenocysteine utilization in bacteria: A balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues. Genome Biol. 7, R94 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 73.

    Rother, M. & Krzycki, J. A. Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic Archaea. Archaea 2010, 453642 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 74.

    Peng, T., Lin, J., Xu, Y.-Z. & Zhang, Y. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J. 10, 2048–2059 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Mariotti, M. et al. Evolution of selenophosphate synthetases: Emergence and relocation of function through independent duplications and recurrent subfunctionalization. Genome Res. 25, 1256–1267 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Ogawa, K. et al. The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J. Bacteriol. 177, 1409–1413 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 77.

    Suzuki, I., Sugiyama, T. & Omata, T. Primary structure and transcriptional regulation of the gene for nitrite reductase from the cyanobacterium Synechococcus PCC 7942. Plant Cell Physiol. 34, 1311–1320 (1993).

    CAS  Google Scholar 

  • 78.

    Gangeswaran, R., Lowe, D. J. & Eady, R. R. Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii. Biochem. J. 289(Pt 2), 335–342 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Rubio, L. M., Flores, E. & Herrero, A. Purification, cofactor analysis, and site-directed mutagenesis of Synechococcus ferredoxin-nitrate reductase. Photosyn. Res. 72, 13–26 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Lin, J. T., Goldman, B. S. & Stewart, V. Structures of genes nasA and nasB, encoding assimilatory nitrate and nitrite reductases in Klebsiella pneumoniae M5al. J. Bacteriol. 175, 2370–2378 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Blasco, R., Castillo, F. & Martínez-Luque, M. The assimilatory nitrate reductase from the phototrophic bacterium, Rhodobacter capsulatus E1F1, is a flavoprotein. FEBS Lett. 414, 45–49 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 82.

    Krafft, T. & Macy, J. M. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255, 647–653 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Afkar, E. et al. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol. Lett. 226, 107–112 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 84.

    Ellis, P. J., Conrads, T., Hille, R. & Kuhn, P. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9, 125–132 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 85.

    Warelow, T. P., Pushie, M. J., Cotelesage, J. J. H., Santini, J. M. & George, G. N. The active site structure and catalytic mechanism of arsenite oxidase. Sci. Rep. 7, 1757 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 86.

    Karrasch, M., Börner, G. & Thauer, R. K. The molybdenum cofactor of formylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett. 274, 48–52 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 87.

    Schmitz, R. A., Albracht, S. P. & Thauer, R. K. A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei. Eur. J. Biochem. 209, 1013–1018 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Yamamoto, I., Saiki, T., Liu, S. M. & Ljungdahl, L. G. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J. Biol. Chem. 258, 1826–1832 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 89.

    Jones, J. B. & Stadtman, T. C. Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form. J. Biol. Chem. 256, 656–663 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 90.

    Boratyn, G. M. et al. Domain enhanced lookup time accelerated BLAST. Biol. Direct 7, 12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 91.

    Markowitz, V. M. et al. The integrated microbial genomes (IMG) system. Nucl. Acids Res. 34, D344–D348 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 92.

    Bertero, M. G. et al. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat. Struct. Biol. 10, 681–687 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 93.

    Afshar, S., Johnson, E., de Vries, S. & Schröder, I. Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum. J. Bacteriol. 183, 5491–5495 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 94.

    Ramírez-Arcos, S., Fernández-Herrero, L. A. & Berenguer, J. A thermophilic nitrate reductase is responsible for the strain specific anaerobic growth of Thermus thermophilus HB8. Biochim. Biophys. Acta 1396, 215–227 (1998).

    PubMed  PubMed Central  Google Scholar 

  • 95.

    Thorell, H. D., Stenklo, K., Karlsson, J. & Nilsson, T. A gene cluster for chlorate metabolism in Ideonella dechloratans. Appl. Environ. Microbiol. 69, 5585–5592 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Schröder, I., Rech, S., Krafft, T. & Macy, J. M. Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol. Chem. 272, 23765–23768 (1997).

    PubMed  PubMed Central  Google Scholar 

  • 97.

    McDevitt, C. A., Hugenholtz, P., Hanson, G. R. & McEwan, A. G. Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: Its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol. Microbiol. 44, 1575–1587 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 98.

    Méjean, V. et al. TMAO anaerobic respiration in Escherichia coli: Involvement of the tor operon. Mol. Microbiol. 11, 1169–1179 (1994).

    PubMed  PubMed Central  Google Scholar 

  • 99.

    Czjzek, M. et al. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 Å resolution. J. Mol. Biol. 284, 435–447 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 100.

    Pierson, D. E. & Campbell, A. Cloning and nucleotide sequence of bisC, the structural gene for biotin sulfoxide reductase in Escherichia coli. J. Bacteriol. 172, 2194–2198 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 101.

    White, H., Strobl, G., Feicht, R. & Simon, H. Carboxylic acid reductase: A new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur. J. Biochem. 184, 89–96 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 102.

    Mukund, S. & Adams, M. W. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. J. Biol. Chem. 266, 14208–14216 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 103.

    Hu, Y., Faham, S., Roy, R., Adams, M. W. W. & Rees, D. C. Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: The 1.85 Å resolution crystal structure and its mechanistic implications. J. Mol. Biol. 286, 899–914 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 104.

    Mukund, S. & Adams, M. W. Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. A role for tungsten in peptide catabolism. J. Biol. Chem. 268, 13592–13600 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 105.

    Mukund, S. & Adams, M. W. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J. Biol. Chem. 270, 8389–8392 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 106.

    Park, M.-O., Mizutani, T. & Jones, P. R. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase from Methanococcus maripaludis. J. Bacteriol. 189, 7281–7289 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 107.

    Reher, M., Gebhard, S. & Schönheit, P. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden–Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix. FEMS Microbiol. Lett. 273, 196–205 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 108.

    Vorholt, J. A., Vaupel, M. & Thauer, R. K. A selenium-dependent and a selenium-independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri. Mol. Microbiol. 23, 1033–1042 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 109.

    Nakamura, T., Yamada, K. D., Tomii, K. & Katoh, K. Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34, 2490–2492 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 110.

    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 111.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 112.

    Le, S. Q., Dang, C. C. & Gascuel, O. Modeling protein evolution with several amino acid replacement matrices depending on site rates. Mol. Biol. Evol. 29, 2921–2936 (2012).

    CAS  Google Scholar 

  • 113.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) 1–8 (2010). https://doi.org/10.1109/GCE.2010.5676129.

  • 114.

    Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    D-Lab moves online, without compromising on impact

    Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle