in

Pathogen-associated selection on innate immunity genes (TLR4, TLR7) in a neotropical rodent in landscapes differing in anthropogenic disturbance

  • Adler GH (1994) Tropical forest fragmentation and isolation promote asynchrony among populations of a frugivorous rodent. J Anim Ecol 63:903–911

    Google Scholar 

  • Adler GH, Endries M, Piotter S (1997) Spacing patterns within populations of a tropical forest rodent, Proechimys semispinosus, on five Panamanian islands. J Zool 241:43–53

    Google Scholar 

  • Alcaide M, Edwards SV (2011) Molecular evolution of the Toll-like receptor multigene family in birds. Mol Biol Evol 28:1703–1715

    CAS  PubMed  Google Scholar 

  • Areal H, Abrantes J, Esteves PJ (2011) Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evolut Biol 11:368

    CAS  Google Scholar 

  • Axtner J, Sommer S (2007) Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, Clethrionomys glareolus. Immunogenetics 59:417–426

    CAS  PubMed  Google Scholar 

  • Babik W, Dudek K, Fijarczyk A, Pabijan M, Stuglik M, Szkotak R et al. (2014) Constraint and adaptation in newt Toll-like receptor genes. Genome Biol Evol 7:81–95

    PubMed  PubMed Central  Google Scholar 

  • Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK et al. (2009) Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet 5:e1000562

    PubMed  PubMed Central  Google Scholar 

  • Becker CG, Zamudio KR (2011) Tropical amphibian populations experience higher disease risk in natural habitats. Proc Natl Acad Sci USA 108:9893–9898

    CAS  PubMed  Google Scholar 

  • Brattig NW, Bazzocchi C, Kirschning CJ, Reiling N, Buttner DW, Ceciliani F et al. (2004) The major surface protein of Wolbachia endosymbionts in filarial nematodes elicits immune responses through TLR2 and TLR4. J Immunol 173:437–445

    CAS  PubMed  Google Scholar 

  • Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V et al. (2011) A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 43:242–245

    CAS  PubMed  Google Scholar 

  • Civitello DJ, Cohen J, Fatima H, Halstead NT, Liriano J, McMahon TA et al. (2015) Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc Natl Acad Sci USA 112:8667–8671

    CAS  PubMed  Google Scholar 

  • Clarke B, Kirby DRS (1966) Maintenance of histocompatibility polymorphisms. Nature 211:999–1000

    CAS  PubMed  Google Scholar 

  • Corman VM, Grundhoff A, Baechlein C, Fischer N, Gmyl A, Wollny R et al. (2015) Highly divergent hepaciviruses from African cattle. J Virol https://doi.org/10.1128/JVI.00393-15

  • Cui J, Cheng Y, Belov K (2015a) Diversity in the Toll-like receptor genes of the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 67:195–201

    CAS  PubMed  Google Scholar 

  • Cui J, Frankham GJ, Johnson RN, Polkinghorne A, Timms P, O’Meally D et al. (2015b) SNP marker discovery in Koala TLR genes. PLoS ONE 10:e0121068

    PubMed  PubMed Central  Google Scholar 

  • Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52

    CAS  PubMed  Google Scholar 

  • Drexler JF, Corman VM, Müller MA, Lukashev AN, Gmyl A, Coutard B et al. (2013) Evidence for novel Hepaciviruses in rodents. PLoS Pathog 9:e1003438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endries MJ, Adler GH (2005) Spacing patterns of a tropical forest rodent, the spiny rat (Proechimys semispinosus), in Panama. J Zool 265:147–155

    Google Scholar 

  • Escalera-Zamudio M, Zepeda-Mendoza ML, Loza-Rubio E, Rojas-Anaya E, Méndez M, Arias C et al. (2015) The evolution of bat nucleic acid sensing Toll-like receptors. Mol Ecol 24:5899–5909

    CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  PubMed Central  Google Scholar 

  • Ferrer-Admetlla A, Bosch E, Sikora M, Marquès-Bonet T, Ramírez-Soriano A, Muntasell A et al. (2008) Balancing selection is the main force shaping the evolution of innate immunity genes. J Immunol 181:1315–1322

    CAS  PubMed  Google Scholar 

  • Firth C, Bhat M, Firth MA, Williams SH, Frye MJ, Simmonds P et al. (2014) Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City. mBio 5:e01933-14

  • Flacke G, Becker P, Cooper D, Szykman Gunther M, Robertson I, Holyoake C et al. (2013) An infectious disease and mortality survey in a population of free-ranging African wild dogs and sympatric domestic dogs. Int J Biodivers 2013:e497623

  • Fornůsková A, Bryja J, Vinkler M, Macholán M, Piálek J (2014) Contrasting patterns of polymorphism and selection in bacterial-sensing Toll-like receptor 4 in two house mouse subspecies. Ecol Evol 4:2931–2944

    PubMed  PubMed Central  Google Scholar 

  • Fornůsková A, Vinkler M, Pagès M, Galan M, Jousselin E, Cerqueira F et al. (2013) Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (Murinae). BMC Evol Biol 13:194

    PubMed  PubMed Central  Google Scholar 

  • Froeschke G, Harf R, Sommer S, Matthee S (2010) Effects of precipitation on parasite burden along a natural climatic gradient in southern Africa—implications for possible shifts in infestation patterns due to global changes. Oikos 119:1029–1039

    Google Scholar 

  • Froeschke G, Sommer S (2012) Insights into the complex associations between MHC class II DRB polymorphism and multiple gastrointestinal parasite infestations in the Striped mouse. PLoS ONE 7:e31820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gavan MK, Oliver MK, Douglas A, Piertney SB (2015) Gene dynamics of Toll-like receptor 4 through a population bottleneck in an insular population of water voles (Arvicola amphibius). Conserv Genet 16:1181–1193

    CAS  Google Scholar 

  • Georgel P, Macquin C, Bahram S (2009) The heterogeneous allelic repertoire of human Toll-like receptor (TLR) genes. PLoS ONE 4:e7803

    PubMed  PubMed Central  Google Scholar 

  • Grueber CE, Knafler GJ, King TM, Senior AM, Grosser S, Robertson B et al. (2015) Toll-like receptor diversity in 10 threatened bird species: relationship with microsatellite heterozygosity. Conserv Genet 16:595–611

    CAS  Google Scholar 

  • Grueber CE, Wallis GP, King TM, Jamieson IG (2012) Variation at innate immunity Toll-like receptor genes in a bottlenecked population of a New Zealand robin. PLoS ONE 7:e45011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al. (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:1526–1529

    CAS  PubMed  Google Scholar 

  • Hugot J-P, Baujard P, Morand S (2001) Biodiversity in helminths and nematodes as a field of study: an overview. Nematology 3:199–208

    Google Scholar 

  • Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    CAS  PubMed  Google Scholar 

  • Jepson A, Banya W, Sisay-Joof F, Hassan-King M, Nunes C, Bennett S et al. (1997) Quantification of the relative contribution of major histocompatibility complex (MHC) and non-MHC genes to human immune responses to foreign antigens. Infect Immun 65:872–876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin MS, Lee J-O (2008) Structures of the Toll-like receptor family and its ligand complexes. Immunity 29:182–191

    CAS  PubMed  Google Scholar 

  • Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL et al. (2008) Global trends in emerging infectious diseases. Nature 451:990–993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kapoor A, Simmonds P, Scheel TKH, Hjelle B, Cullen JM, Burbelo PD et al. (2013) Identification of rodent homologs of hepatitis C virus and pegiviruses. mBio 4:e00216–13

    PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32

    CAS  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S et al. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed  PubMed Central  Google Scholar 

  • Kim J-H, Cheong HS, Park B-L, Bae JS, Jung S, Yoon S-H et al. (2010) A new association between polymorphisms of the SLC6A7 gene in the chromosome 5q31–32 region and asthma. J Hum Genet 55:358–365

    CAS  PubMed  Google Scholar 

  • Knafler GJ, Ortiz-Catedral L, Jackson B, Varsani A, Grueber CE, Robertson BC et al. (2016) Comparison of beak and feather disease virus prevalence and immunity-associated genetic diversity over time in an island population of red-crowned parakeets. Arch Virol 161:811–820

    CAS  PubMed  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacher TE, Mittermeier RA, Wilson DE (2016) Handbook of the mammals of the world: vol. 6: lagomorphs and rodents I. Lynx Edicions

  • Lechner AM, Sprod D, Carter O, Lefroy EC (2017) Characterising landscape connectivity for conservation planning using a dispersal guild approach. Landsc Ecol 32:99–113

    Google Scholar 

  • Lenth R (2020) emmeans: estimated marginal means, aka least-squares means. R package version 1.4.5. https://CRAN.R-project.org/package=emmeans

  • Lenz TL, Wells K, Pfeiffer M, Sommer S (2009) Diverse MHC IIB allele repertoire increases parasite resistance and body condition in the Long-tailed giant rat (Leopoldamys sabanus). BMC Evolut Biol 9:269

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    CAS  PubMed  Google Scholar 

  • Lin Y-S, Zhou H, Forrest RHJ, Frampton CM, Burrows LER, Hickford JGH (2016) Association between variation in faecal egg count for a natural mixed field-challenge of nematode parasites and TLR4 variation. Vet Parasitol 218:5–9

    CAS  PubMed  Google Scholar 

  • Liu G, Zhang H, Sun G, Zhao C, Shang S, Gao X et al. (2017) Characterization of the peripheral blood transcriptome and adaptive evolution of the MHC I and TLR gene families in the wolf (Canis lupus). BMC Genomics 18:584

    PubMed  PubMed Central  Google Scholar 

  • Loots AK, Cardoso-Vermaak E, Venter EH, Mitchell E, Kotzé A, Dalton DL (2018) The role of Toll-like receptor polymorphisms in susceptibility to canine distemper virus. Mamm Biol 88:94–99

    Google Scholar 

  • Lüdecke D (2020) sjPlot: data visualization for statistics in social science. R package version 2.8.3. https://CRAN.R-project.org/package=sjPlot

  • Machida K, Cheng KTH, Sung VM-H, Levine AM, Foung S, Lai MMC (2006) Hepatitis C virus induces Toll-like receptor 4 expression, leading to enhanced production of beta interferon and interleukin-6. J Virol 80:866–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243

    CAS  PubMed  Google Scholar 

  • Meyer-Lucht Y, Sommer S (2009) Number of MHC alleles is related to parasite loads in natural populations of yellow necked mice, Apodemus flavicollis. Evol Ecol Res 11:1085–1097

    Google Scholar 

  • Mills JN, Childs JE (1998) Ecologic studies of rodent reservoirs: their relevance for human health. Emerg Infect Dis 4:529–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morger J, Bajnok J, Boyce K, Craig PS, Rogan MT, Lun Z-R et al. (2014) Naturally occurring Toll-like receptor 11 (TLR11) and Toll-like receptor 12 (TLR12) polymorphisms are not associated with Toxoplasma gondii infection in wild wood mice. Infect, Genet Evolution 26:180–184

    CAS  Google Scholar 

  • Mukherjee S, Sarkar-Roy N, Wagener DK, Majumder PP (2009) Signatures of natural selection are not uniform across genes of innate immune system, but purifying selection is the dominant signature. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0811357106

  • Oh D-Y, Baumann K, Hamouda O, Eckert JK, Neumann K, Kücherer C et al. (2009) A frequent functional Toll-like receptor 7 polymorphism is associated with accelerated HIV-1 disease progression AIDS 23:297–307

    CAS  PubMed  Google Scholar 

  • Ostfeld RS, Keesing F (2012) Effects of host diversity on infectious disease. Annu Rev Ecol Evol Syst 43:157–182

    Google Scholar 

  • Palermo S, Capra E, Torremorell M, Dolzan M, Davoli R, Haley CS et al. (2009) Toll-like receptor 4 genetic diversity among pig populations. Anim Genet 40:289–299

    CAS  PubMed  Google Scholar 

  • Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21

    CAS  PubMed  Google Scholar 

  • Püttker T, Meyer-Lucht Y, Sommer S (2008) Effects of fragmentation on parasite burden (nematodes) of generalist and specialist small mammal species in secondary forest fragments of the coastal Atlantic Forest, Brazil. Ecol Res 23:207–215

    Google Scholar 

  • QGIS Development Team (2016) QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • Quéméré E, Galan M, Cosson J-F, Klein F, Aulagnier S, Gilot-Fromont E et al. (2015) Immunogenetic heterogeneity in a widespread ungulate: the European roe deer (Capreolus capreolus). Mol Ecol 24:3873–3887

    PubMed  Google Scholar 

  • R Core Team (2020). R Core Team (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/

  • Randolph SE, Dobson ADM (2012) Pangloss revisited: a critique of the dilution effect and the biodiversity-buffers-disease paradigm. Parasitology 139:847–863

    CAS  PubMed  Google Scholar 

  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD et al. (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582

    CAS  PubMed  Google Scholar 

  • Rolland A, Jouvin-Marche E, Viret C, Faure M, Perron H, Marche PN (2006) The envelope protein of a human endogenous retrovirus-W family activates innate immunity through CD14/TLR4 and promotes Th1-like responses. J Immunol 176:7636–7644

    CAS  PubMed  Google Scholar 

  • Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439–450

    CAS  PubMed  Google Scholar 

  • Schmid J, Rasche A, Eibner G, Jeworowski L, Page RA, Corman VM et al. (2018) Ecological drivers of Hepacivirus infection in a neotropical rodent inhabiting landscapes with various degrees of human environmental change. Oecologia 188:289–302

    PubMed  Google Scholar 

  • Schott E, Witt H, Neumann K, Bergk A, Halangk J, Weich V et al. (2008) Association of TLR7 single nucleotide polymorphisms with chronic HCV-infection and response to interferon-a-based therapy. J Viral Hepat 15:71–78

    CAS  PubMed  Google Scholar 

  • Schröder NWJ, Schumann RR (2005) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis 5:156–164

    PubMed  Google Scholar 

  • Schwensow N, Fietz J, Dausmann KH, Sommer S (2007) Neutral versus adaptive genetic variation in parasite resistance: importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity 99:265–277

    CAS  PubMed  Google Scholar 

  • Schwensow N, Mazzoni CJ, Marmesat E, Fickel J, Peacock D, Kovaliski J et al. (2017) High adaptive variability and virus-driven selection on major histocompatibility complex (MHC) genes in invasive wild rabbits in Australia. Biol Invasions 19:1255–1271

    Google Scholar 

  • Seamon JO, Adler GH (1999) Short-term use of space by a Neotropical forest rodent, Proechimys semispinosus. J Mammal 80:899–904

    Google Scholar 

  • Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T et al. (2017) ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98:2–3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skevaki C, Pararas M, Kostelidou K, Tsakris A, Routsias JG (2015) Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious diseases. Clin Exp Immunol 180:165–177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sloss MW, Kemp RL, Zajac A, Parasitologists AA of V (1994) Veterinary clinical parasitology. 6th ed. Iowa State University Press, Ames

  • Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16

    PubMed  PubMed Central  Google Scholar 

  • Stear MJ, Bairden K, Duncan JL, Holmes PH, McKellar QA, Park M et al. (1997) How hosts control worms. Nature 389:27

    CAS  PubMed  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka G, Urabe C, Aihara K (2014) Random and targeted interventions for epidemic control in metapopulation models. Sci Rep 4:5522

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor BD, Darville T, Ferrell RE, Kammerer CM, Ness RB, Haggerty CL (2012) Variants in Toll-like receptor 1 and 4 genes are associated with Chlamydia trachomatis among women with pelvic inflammatory disease. J Infect Dis 205:603–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thienpont D, Rochette F, Vanparijs OFJ (1986) Diagnosing helminthiasis by coprological examination. Janssen Research Foundation, Beerse, Belgium

  • Tschirren B, Andersson M, Scherman K, Westerdahl H, Mittl PRE, Råberg L (2013) Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infection in a wild rodent population. Proc Biol Sci 280:20130364

    PubMed  PubMed Central  Google Scholar 

  • Tschirren B, Andersson M, Scherman K, Westerdahl H, Råberg L (2012) Contrasting patterns of diversity and population differentiation at the innate immunity gene Toll-like receptor 2 (TLR2) in two sympatric rodent species. Evolution 66:720–731

    CAS  PubMed  Google Scholar 

  • Tschirren B, Råberg L, Westerdahl H (2011) Signatures of selection acting on the innate immunity gene Toll-like receptor 2 (TLR2) during the evolutionary history of rodents. J Evolut Biol 24:1232–1240

    CAS  Google Scholar 

  • Turner AK, Begon M, Jackson JA, Paterson S (2012) Evidence for selection at cytokine loci in a natural population of field voles (Microtus agrestis). Mol Ecol 21:1632–1646

    CAS  PubMed  Google Scholar 

  • Uciechowski P, Imhoff H, Lange C, Meyer CG, Browne EN, Kirsten DK et al. (2011) Susceptibility to tuberculosis is associated with TLR1 polymorphisms resulting in a lack of TLR1 cell surface expression. J Leukoc Biol 90:377–388

    CAS  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer New York, New York, NY

    Google Scholar 

  • Venugopal PG, Nutman TB, Semnani RT (2008) Activation and regulation of Toll-like receptors (TLRs) by helminth parasites. Immunol Res 43:252–263

    Google Scholar 

  • Wada M, Marusawa H, Yamada R, Nasu A, Osaki Y, Kudo M et al. (2009) Association of genetic polymorphisms with interferon-induced haematologic adverse effects in chronic hepatitis C patients. J Viral Hepat 16:388–396

    CAS  PubMed  Google Scholar 

  • Wang C-M, Chang S-W, Wu Y-JJ, Lin J-C, Ho H-H, Chou T-C et al. (2014) Genetic variations in Toll-like receptors (TLRs 3/7/8) are associated with systemic lupus erythematosus in a Taiwanese population. Sci Rep. 4:3792

    PubMed  PubMed Central  Google Scholar 

  • Wang C-H, Eng H-L, Lin K-H, Chang C-H, Hsieh C-A, Lin Y-L et al. (2011) TLR7 and TLR8 gene variations and susceptibility to hepatitis C virus Infection. PLoS ONE 6:e26235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteoak AM, Ideozu J, Alkathiry H, Tomlinson AJ, Delahay RJ, Cowen S et al. (2018) Investigation into the genetic diversity in toll-like receptors 2 and 4 in the European badger Meles meles. Res Vet Sci 119:228–231

    CAS  PubMed  Google Scholar 

  • Wickham H (2009) ggplot2. Springer New York, New York, NY

    Google Scholar 

  • Wilke CO (2017) cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.0.0. https://cloud.r-project.org/package=cowplot

  • Wlasiuk G, Nachman MW (2010) Adaptation and constraint at Toll-like receptors in primates. Mol Biol Evol 27:2172–2186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SH, Gochhait S, Malhotra D, Pettersson FH, Teo YY, Khor CC et al. (2010) Leprosy and the adaptation of human Toll-like receptor 1. PLoS Pathog 6:e1000979

    PubMed  PubMed Central  Google Scholar 

  • Woodroffe R, Prager KC, Munson L, Conrad PA, Dubovi EJ, Mazet JAK (2012) Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PLoS ONE 7:e30099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Cowled C, Shi Z, Huang Z, Bishop-Lilly KA, Fang X et al. (2013) Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339:456–460

    CAS  PubMed  Google Scholar 

  • Zhou H, Gu J, Lamont SJ, Gu X (2007) Evolutionary analysis for functional divergence of the Toll-like receptor gene family and altered functional constraints. J Mol Evol 65:119–123

    CAS  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Google Scholar 


  • Source: Ecology - nature.com

    D-Lab moves online, without compromising on impact

    Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle