in

Tall fescue sward structure affects the grazing process of sheep

  • 1.

    Keating, B. A., Carberry, P., Thomas, S., Clark, J. Eco-efficient agriculture and climate change: Conceptual foundations and frameworks. In Eco-Efficiency: From Vision to Reality (ed. Hershey, C. H., Neate, P.) 19–28 (CIAT, Cali, 2013).

  • 2.

    Herrero, M. et al. Livestock and the environment: What have we learned in the past decade?. Annu. Rev. Environ. Resour. 40, 177–202. https://doi.org/10.1146/annurev-environ-031113-093503 (2015).

    Article  Google Scholar 

  • 3.

    Rouquette, F. M. Jr. Grazing systems research and impact of stocking strategies on pasture–animal production efficiencies. Crop Sci. 55, 2513–2530. https://doi.org/10.2135/cropsci2015.01.0062 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Carvalho, P. C. F. et al. From the bite to precision grazing: Understanding the plant-animal interface to exploit the multi-functionality of grasslands. R. Bras. Zootec. 38, 109–122 (2009).

    Article  Google Scholar 

  • 5.

    Laca, E. A. Precision livestock production: Tools and concepts. R. Bras. Zootec. 38, 123–132 (2009).

    Article  Google Scholar 

  • 6.

    Bonaudo, T. et al. Agroecological principles for the redesign of integrated crop–livestock systems. Eur. J. Agron. 57, 43–51. https://doi.org/10.1016/j.eja.2013.09.010 (2014).

    Article  Google Scholar 

  • 7.

    Massey, F. P. & Hartley, S. E. Experimental demonstration of the anti-herbivore effects of silica in grasses: Impacts on foliage digestibility and vole growth rates. Proc. R. Soc. B. 273, 2299–2304. https://doi.org/10.1098/rspb.2006.3586 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Shipley, L. A. The influence of bite size on foraging at larger spatial and temporal scales by mammalian herbivores. Oikos 116, 1964–1974. https://doi.org/10.1111/j.2007.0030-1299.15974.x (2007).

    Article  Google Scholar 

  • 9.

    Mendoza, M. & Palmqvist, P. Hypsodonty in ungulates: An adaptation for grass consumption or for foraging in open habitat?. J. Zool. 274, 134–142. https://doi.org/10.1111/j.1469-7998.2007.00365.x (2008).

    Article  Google Scholar 

  • 10.

    Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Ann. Rev. Earth Planet Sci. 39, 517–544. https://doi.org/10.1146/annurev-earth-040809-152402 (2011).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Allden, W. G. & Whittaker, I. A. M. D. The determinants of herbage intake by grazing sheep: The interrelationship of factors influencing herbage intake and availability. Aust. J. Agric. Res. 21, 755–766 (1970).

    Article  Google Scholar 

  • 12.

    Laca, E. A., Ungar, E. D., Seligman, N. G. & Demment, M. W. Effects of sward height and bulk density on the bite dimensions of cattle grazing homogeneous sward. Grass Forage Sci. 47, 91–102. https://doi.org/10.1111/j.1365-2494.1992.tb02251.x (1992).

    Article  Google Scholar 

  • 13.

    Laca, E. A., Ortega, I. M. Integrating foraging mechanisms across spatial and temporal scales. In Proceedings of the 5th International Rangeland Congress (Scarnecchia, D.L., West, N.E., eds.) 129−132 (Society for Range Management, Denver, 1996).

  • 14.

    Prache, S. & Delagarde, R. The influence of vegetation characteristics on foraging strategy and ingestive behaviour. In Grassland Productivity and Ecosystem Services (eds Lemaire, G. et al.) 27–36 (CABI, Cambridge, 2011).

    Google Scholar 

  • 15.

    Gross, J. E., Shipley, L. A., Hobbs, N. T., Spalinger, D. E. & Wunder, B. A. Functional response of herbivores in food-concentrated patches: Tests of a mechanistic model. Ecology 74, 778–791. https://doi.org/10.2307/1940805 (1993).

    Article  Google Scholar 

  • 16.

    Decruyenaere, V., Buldgen, A. & Stilmant, D. Factors affecting intake by grazing ruminants and related quantification methods: A review. Biotechnol. Agron. Soc. Environ. 13, 559–573 (2009).

    Google Scholar 

  • 17.

    Amaral, M. F. et al. Sward structure management for a maximum short-term intake rate in annual ryegrass. Grass Forage Sci. 68, 271–277. https://doi.org/10.1111/j.1365-2494.2012.00898.x (2012).

    ADS  Article  Google Scholar 

  • 18.

    Barre, J. P. et al. Morphological characteristics of perennial ryegrass leaves that influence short-term intake in dairy cows. Agron. J. 98, 978–985. https://doi.org/10.2134/agronj2005.0213 (2006).

    Article  Google Scholar 

  • 19.

    Hodgson J. Grazing Management: Science Into Practice. Longman Scientific and Technical. 1st edn. (Longman Group, London, 1990).

  • 20.

    Fonseca, L. et al. Management targets for maximizing the short-term herbage intake rate of cattle grazing in Sorghum bicolor. Livest. Sci. 145, 205–211. https://doi.org/10.1016/j.livsci.2012.02.003 (2012).

    Article  Google Scholar 

  • 21.

    Mezzalira, J. C. et al. Rotational grazing management in a tropical pasture to maximize the dairy cow’s herbage intake rate. Arq. Bras. Med. Vet. Zootec. 65, 833–840 (2013).

    Article  Google Scholar 

  • 22.

    Mezzalira, J. C. et al. Behavioural mechanisms of intake rate by heifers grazing swards of contrasting structures. Appl. Anim. Behav. Sci. 153, 1–9. https://doi.org/10.1016/j.applanim.2013.12.014 (2014).

    Article  Google Scholar 

  • 23.

    Orr, R. et al. Intake characteristics of perennial ryegrass varieties when grazed by sheep under continuous stocking management. Euphytica 134, 247–260. https://doi.org/10.1023/B:EUPH.0000004949.49050.78 (2003).

    Article  Google Scholar 

  • 24.

    Guzatti, G. C. et al. Changes in the short-term intake rate of herbage by heifers grazing annual grasses throughout the growing season. Grassl. Sci. 63, 255–264. https://doi.org/10.1111/grs.12170 (2017).

    Article  Google Scholar 

  • 25.

    Bailey, D. W. et al. Mechanisms that result in large herbivore grazing distribution patterns. J. Range Manag. 49, 386–400 (1996).

    Article  Google Scholar 

  • 26.

    Griffiths, W. M., Hodgson, J. & Arnold, G. C. The influence of sward canopy structure on foraging decisions by grazing cattle I. Patch selection. Grass Forage Sci. 58, 112–124. https://doi.org/10.1046/j.1365-2494.2003.00360.x (2003).

    Article  Google Scholar 

  • 27.

    Gonçalves, E. N. et al. Plant-animal relationships in pastoral heterogeneous environment: Process of herbage intake. R. Bras. Zootec. 38, 611–617 (2009).

    Article  Google Scholar 

  • 28.

    Fonseca, L. et al. Effect of sward surface height and level of herbage depletion on bite features of cattle grazing Sorghum bicolor swards. J. Anim. Sci. 91, 4357–4365. https://doi.org/10.2527/jas2012-5602 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Carvalho, P. C. F. Harry stobbs memorial lecture: Can grazing behavior support innovations in grassland management?. Trop. Grassl-Forrajes Trop. 1, 137–155 (2013).

    Article  Google Scholar 

  • 30.

    Baumont, R., Cohen-Salmon, D., Prache, S. & Sauvant, D. A mechanistic model of intake and grazing behaviour in sheep integrating sward architecture and animal decisions. Anim. Feed Sci. Technol. 112, 5–28. https://doi.org/10.1016/j.anifeedsci.2003.10.005 (2004).

    Article  Google Scholar 

  • 31.

    Mezzalira, J. C. et al. Mechanisms and implications of a type iv functional response for short-term intake rate of dry matter in large mammalian herbivores. J. Anim. Ecol. 86, 1159–1168. https://doi.org/10.1111/1365-2656.12698 (2017).

    Article  PubMed  Google Scholar 

  • 32.

    Ungar, E. D., Genizi, A. & Demment, M. W. Bite dimensions and herbage intake by cattle grazing short hand-constructed swards. Agron. J. 83, 973–978. https://doi.org/10.2134/agronj1991.00021962008300060010x (1991).

    Article  Google Scholar 

  • 33.

    Laca, E. A., Ungar, E. D. & Demment, M. W. Mechanisms of handling time and intake rate of a large mammalian grazer. Appl. Anim. Behav. Sci. 39, 3–19. https://doi.org/10.1016/0168-1591(94)90011-6 (1994).

    Article  Google Scholar 

  • 34.

    Black, J. L. & Kenney, P. A. Factors affecting diet selection by sheep. II. Height and density of pasture. Aust. J. Agric. Res. 35, 551–563. https://doi.org/10.1071/AR9840565 (1984).

    Article  Google Scholar 

  • 35.

    Burlison, A. J., Hodgson, J. & Illius, A. W. Sward canopy structure and the bite dimensions and bite weight of grazing sheep. Grass Forage Sci. 46, 29–38. https://doi.org/10.1111/j.1365-2494.1991.tb02205.x (1991).

    Article  Google Scholar 

  • 36.

    Gregorini, P. et al. Effect of herbage depletion on short-term foraging dynamics and diet quality of steers grazing wheat pastures. J. Anim. Sci. 89, 3824–3830. https://doi.org/10.2527/jas.2010-3725 (2011).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Benvenutti, M. A., Gordon, I. J. & Poppi, D. P. The effect of the density and physical properties of grass stems on the foraging behaviour and instantaneous intake rate by cattle grazing an artificial reproductive tropical sward. Grass Forage Sci. 61, 272–281. https://doi.org/10.1111/j.1365-2494.2006.00531.x (2006).

    Article  Google Scholar 

  • 38.

    Benvenutti, M. A., Gordon, I. J. & Poppi, D. P. The effects of stem density of tropical swards and age of grazing cattle on their foraging behaviour. Grass Forage Sci. 63, 1–8. https://doi.org/10.1111/j.1365-2494.2007.00609.x (2008).

    Article  Google Scholar 

  • 39.

    Pretorius, Y. et al. Why elephant have trunks and giraffe long tongues: how plants shape large herbivoremouth morphology. Acta Zool. 97, 246–254. https://doi.org/10.1111/azo.12121 (2016).

    Article  Google Scholar 

  • 40.

    Verdenal, A., Combes, D. & Escobar-Gutiérrez, A. J. A study of ryegrass architecture as a self-regulated system, using functional–structural plant modelling. Funct. Plant Biol. 35, 911–924. https://doi.org/10.1071/FP08050 (2008).

    Article  Google Scholar 

  • 41.

    Sonohat, G. et al. Leaf dispersion and light partitioning in three dimensionally digitized tall fescue–white clover mixtures. Plant Cell Environ. 25, 529–538. https://doi.org/10.1046/j.1365-3040.2002.00833.x (2002).

    Article  Google Scholar 

  • 42.

    Greenwood, R. M. & Atkinson, I. A. E. Evolution of divaricating plants in new zealand in relation to moa browsing. Proc. N. Z. Ecol. Soc. 24, 21–33 (1977).

    Google Scholar 

  • 43.

    McQueen, D. R. Divaricating shrubs in patagonia and new zealand. N Z J. Ecol. 24, 69–80 (2000).

    Google Scholar 

  • 44.

    Bond, W. J., Lee, W. G. & Craine, J. M. Plant structural defenses against browsing birds: A legacy of New Zealand’ extinct moas. Oikos 104, 500–508. https://doi.org/10.1111/j.0030-1299.2004.12720.x (2004).

    Article  Google Scholar 

  • 45.

    Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Evol. Syst. 2, 369–404 (1971).

    Article  Google Scholar 

  • 46.

    Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).

    Article  Google Scholar 

  • 47.

    Illius, A. W., Gordon, I. J., Milne, J. D. & Wright, W. Costs and benefits of foraging on grasses varying in canopy structure and resistance to defoliation. Funct. Ecol. 9, 894–903. https://doi.org/10.2307/2389988 (1995).

    Article  Google Scholar 

  • 48.

    Hirata, M., Kunieda, E. & Tobisa, M. Short-term ingestive behaviour of cattle grazing tropical stoloniferous grasses with contrasting growth forms. J. Agric. Sci. 148, 615–624. https://doi.org/10.1017/S0021859610000353 (2010).

    Article  Google Scholar 

  • 49.

    Savian, J. V. et al. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep. J. Clean Prod. 186, 602–608. https://doi.org/10.1016/j.jclepro.2018.03.162 (2018).

    Article  Google Scholar 

  • 50.

    Soreng, R. J., Terrell, E. E., Wiersema, J., Darbyshire, S. J. (1488) Proposal to conserve the name Schedonorus arundinaceus (Schreb.) Dumort. against Schedonorus arundinaceus Roem. & Schult. (Poaceae: Poeae). Taxonomy 50, 915–917 (2001).

  • 51.

    Barthram GT. Experimental techniques: The HFRO sward stick. In Biennial Report of the Hill Farming Research Organization (ed. Alcock, M. M.) 29–30 (Midlothian: Hill Farming Research Organization, 1985).

  • 52.

    Rutter, S. M., Champion, R. A. & Penning, P. D. An automatic system to record foraging behaviour in free-ranging ruminants. Appl. Anim. Behav. Sci. 54, 185–195. https://doi.org/10.1016/S0168-1591(96)01191-4 (1997).

    Article  Google Scholar 

  • 53.

    Rutter, S. M. Graze: A program to analyze recordings of the jaw movements of ruminants. Behav. Res. Methods 32, 86–92. https://doi.org/10.3758/BF03200791 (2000).

    CAS  Article  Google Scholar 

  • 54.

    Gibb M. Animal grazing/intake terminology and definitions. In Pasture Ecology and Animal Intake 21–37 (Proceedings 3, Dublin, 1998).

  • 55.

    Penning, P. D. & Hooper, G. E. N. An evaluation of the use of short-term weight changes in grazing sheep for estimating herbage intake. Grass Forage Sci. 40, 79–84. https://doi.org/10.1111/j.1365-2494.1985.tb01722.x (1985).

    Article  Google Scholar 

  • 56.

    Bonnet, O. J. F. et al. Continuous bite monitoring: A method to assess the foraging dynamics of herbivores in natural grazing conditions. Anim. Prod. Sci. 55, 339–349. https://doi.org/10.1071/AN14540 (2015).

    Article  Google Scholar 

  • 57.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).


  • Source: Ecology - nature.com

    Building a more sustainable MIT — from home

    Unraveling ecosystem functioning in intertidal soft sediments: the role of density-driven interactions