in

Predation threats for a 24-h period activated the extension of axons in the brains of Xenopus tadpoles

  • 1.

    Spitze, K. Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139, 229–247 (1992).

    Google Scholar 

  • 2.

    Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: The roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).

    PubMed  Google Scholar 

  • 3.

    Relyea, R. A. et al. Phylogenetic patterns of trait and trait plasticity evolution: Insights from amphibian embryos. Evolution Int. J. Organic Evolut. 72, 663–678 (2018).

    Google Scholar 

  • 4.

    Reger, J., Lind, M. I., Robinson, M. R. & Beckerman, A. P. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evolut. 2, 100–107 (2018).

    Google Scholar 

  • 5.

    Nunes, A. L., Richter-Boix, A., Laurila, A. & Rebelo, R. Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study. Oecologia 171, 115–127 (2013).

    ADS  PubMed  Google Scholar 

  • 6.

    Johnston, C. A., Wilson Rankin, E. E. & Gruner, D. S. Foraging connections: Patterns of prey use linked to invasive predator diel movement. PLoS ONE 13, e0201883 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Hollander, J. & Bourdeau, P. E. Evidence of weaker phenotypic plasticity by prey to novel cues from non-native predators. Ecol. Evolut. 6, 5358–5365 (2016).

    Google Scholar 

  • 8.

    Relyea, R. A. Trait-mediated indirect effects in larval anurans: Reversing competition with the threat of predation. Ecology 81, 2278–2289 (2000).

    Google Scholar 

  • 9.

    Gallie, J. A., Mumme, R. L. & Wissinger, S. A. Experience has no effect on the development of chemosensory recognition of predators by tadpoles of the American toad, Bufo americanus. Herpetologica 57, 376–383 (2001).

    Google Scholar 

  • 10.

    McCollum, S. A. & Leimberger, J. D. Predator-induced morphological changes in an amphibian: Predation by dragonflies affects tadpole shape and color. Oecologia 109, 615–621 (1997).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).

    Google Scholar 

  • 12.

    Fraker, M. E. The effect of hunger on the strength and duration of the antipredator behavioral response of green frog (Rana clamitans) tadpoles. Behav. Ecol. Sociobiol. 62, 1201–1205 (2008).

    Google Scholar 

  • 13.

    VanBuskirk, J. & Relyea, R. A. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65, 301–328 (1998).

    Google Scholar 

  • 14.

    Kishida, O. & Nishimura, K. Multiple inducible defences against multiple predators in the anuran tadpole, Rana pirica. Evolut. Ecol. Res. 7, 619–631 (2005).

    Google Scholar 

  • 15.

    Van Buskirk, J., McCollum, S. A. & Werner, E. E. Natural selection for environmentally induced phenotypes in tadpoles. Evolution Int. J. Organic Evolut. 51, 1983–1992 (1997).

    Google Scholar 

  • 16.

    Kishida, O., Trussell, G. C., Mougi, A. & Nishimura, K. Evolutionary ecology of inducible morphological plasticity in predator-prey interaction: Toward the practical links with population ecology. Popul. Ecol. 52, 37–46 (2010).

    Google Scholar 

  • 17.

    Mori, T. et al. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles. Biol. Open 6, 1726–1733 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Middlemis Maher, J., Werner, E. E. & Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. Biol. Sci. 280, 20123075 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Adamec, R., Kent, P., Anisman, H., Shallow, T. & Merali, Z. Neural plasticity, neuropeptides and anxiety in animals—Implications for understanding and treating affective disorder following traumatic stress in humans. Neurosci. Biobehav. Rev. 23, 301–318 (1998).

    CAS  PubMed  Google Scholar 

  • 20.

    Figueiredo, H. F., Bodie, B. L., Tauchi, M., Dolgas, C. M. & Herman, J. P. Stress integration after acute and chronic predator stress: Differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144, 5249–5258 (2003).

    CAS  PubMed  Google Scholar 

  • 21.

    Jongren, M., Westander, J., Natt, D. & Jensen, P. Brain gene expression in relation to fearfulness in female red junglefowl (Gallus gallus). Genes Brain Behav. 9, 751–758 (2010).

    CAS  PubMed  Google Scholar 

  • 22.

    Sanogo, Y. O., Hankison, S., Band, M., Obregon, A. & Bell, A. M. Brain transcriptomic response of threespine sticklebacks to cues of a predator. Brain Behav. Evol. 77, 270–285 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Fraser, B. A., Weadick, C. J., Janowitz, I., Rodd, F. H. & Hughes, K. A. Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome. BMC Genomics 12, 202 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Drew, R. E. et al. Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics 13, 323 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Cinel, S. D. & Taylor, S. J. Prolonged bat call exposure induces a broad transcriptional response in the male fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae) brain. Front. Behav. Neurosci. 13, 36 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Miksys, S. & Tyndale, R. F. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab. Rev. 36, 313–333 (2004).

    CAS  PubMed  Google Scholar 

  • 27.

    Ekins, S. & Wrighton, S. A. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 31, 719–754 (1999).

    CAS  PubMed  Google Scholar 

  • 28.

    Hiroi, T. et al. Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology 142, 3901–3908 (2001).

    CAS  PubMed  Google Scholar 

  • 29.

    Seliskar, M. & Rozman, D. Mammalian cytochromes P450–importance of tissue specificity. Biochim. Biophys. Acta 1770, 458–466 (2007).

    CAS  PubMed  Google Scholar 

  • 30.

    Borkum, J. M. Migraine triggers and oxidative stress: A narrative review and synthesis. Headache 56, 12–35 (2016).

    PubMed  Google Scholar 

  • 31.

    Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. & Kretzschmar, H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112 (1997).

    CAS  PubMed  Google Scholar 

  • 32.

    Paitel, E., Fahraeus, R. & Checler, F. Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-dependent caspase 3-like activation. J. Biol. Chem. 278, 10061–10066 (2003).

    CAS  PubMed  Google Scholar 

  • 33.

    Kannan, K. & Jain, S. K. Oxidative stress and apoptosis. Pathophysiology 7, 153–163 (2000).

    CAS  PubMed  Google Scholar 

  • 34.

    Klingenberg, M. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta 1778, 1978–2021 (2008).

    CAS  PubMed  Google Scholar 

  • 35.

    Klumpe, I. et al. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress. J. Mol. Med. (Berlin, Germany) 94, 645–653 (2016).

    CAS  Google Scholar 

  • 36.

    Avila, D. V. et al. Phosphodiesterase 4b expression plays a major role in alcohol-induced neuro-inflammation. Neuropharmacology 125, 376–385 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    You, T. et al. Roflupram, a phosphodiesterase 4 inhibitor, suppresses inflammasome activation through autophagy in microglial cells. ACS Chem. Neurosci. 8, 2381–2392 (2017).

    CAS  PubMed  Google Scholar 

  • 38.

    Glover, E. M., Ressler, K. J. & Davis, M. Differing effects of systemically administered rapamycin on consolidation and reconsolidation of context vs cued fear memories. Learn. Mem. (Cold Spring Harbor, N.Y.) 17, 577–581 (2010).

    CAS  Google Scholar 

  • 39.

    Parsons, R. G., Gafford, G. M. & Helmstetter, F. J. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J. Neurosci. 26, 12977–12983 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 40.

    Slipczuk, L. et al. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS ONE 4, e6007 (2009).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Fifield, K. et al. Time-dependent effects of rapamycin on consolidation of predator stress-induced hyperarousal. Behav. Brain Res. 286, 104–111 (2015).

    CAS  PubMed  Google Scholar 

  • 42.

    Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Dubey, J., Ratnakaran, N. & Koushika, S. P. Neurodegeneration and microtubule dynamics: Death by a thousand cuts. Front. Cell. Neurosci. 9, 343 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Penazzi, L., Bakota, L. & Brandt, R. Microtubule dynamics in neuronal development, plasticity, and neurodegeneration. Int. Rev. Cell Mol. Biol. 321, 89–169 (2016).

    CAS  PubMed  Google Scholar 

  • 45.

    Govek, E. E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).

    CAS  PubMed  Google Scholar 

  • 46.

    Hoogenraad, C. C. & Bradke, F. Control of neuronal polarity and plasticity—A renaissance for microtubules?. Trends Cell Biol. 19, 669–676 (2009).

    CAS  PubMed  Google Scholar 

  • 47.

    Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    CAS  PubMed  Google Scholar 

  • 48.

    Vargas, J. P., Lopez, J. C. & Portavella, M. What are the functions of fish brain pallium?. Brain Res. Bull. 79, 436–440 (2009).

    PubMed  Google Scholar 

  • 49.

    Portavella, M. & Vargas, J. P. Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur. J. Neurosci. 21, 2800–2806 (2005).

    PubMed  Google Scholar 

  • 50.

    Fletcher, M. L. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses. Front. Syst. Neurosci. 6, 16 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Kass, M. D., Rosenthal, M. C., Pottackal, J. & McGann, J. P. Fear learning enhances neural responses to threat-predictive sensory stimuli. Science 342, 1389–1392 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Laberge, F. & Roth, G. Organization of the sensory input to the telencephalon in the fire-bellied toad, Bombina orientalis. J. Comp. Neurol. 502, 55–74 (2007).

    PubMed  Google Scholar 

  • 53.

    Laberge, F., Muhlenbrock-Lenter, S., Dicke, U. & Roth, G. Thalamo-telencephalic pathways in the fire-bellied toad Bombina orientalis. J. Comp. Neurol. 508, 806–823 (2008).

    PubMed  Google Scholar 

  • 54.

    54Nieuwenhuys, R., Donkelaar, H. J. t. & Nicholson, C. The Central Nervous System of Vertebrates. Vol. 3 (Springer, New York, 1998).

  • 55.

    Grossman, E. N., Giurumescu, C. A. & Chisholm, A. D. Mechanisms of ephrin receptor protein kinase-independent signaling in amphid axon guidance in Caenorhabditis elegans. Genetics 195, 899–913 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Borasio, G. D. et al. ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 2, 1087–1096 (1989).

    CAS  PubMed  Google Scholar 

  • 57.

    Sloniowski, S. & Ethell, I. M. Looking forward to EphB signaling in synapses. Semin. Cell Dev. Biol. 23, 75–82 (2012).

    CAS  PubMed  Google Scholar 

  • 58.

    Cruz, E. et al. Infralimbic EphB2 modulates fear extinction in adolescent rats. J. Neurosci. 35, 12394–12403 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).

    CAS  PubMed  Google Scholar 

  • 60.

    Watkins, J. C. & Evans, R. H. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165–204 (1981).

    CAS  PubMed  Google Scholar 

  • 61.

    61Garcia-Nafria, J., Herguedas, B., Watson, J. F. & Greger, I. H. The dynamic AMPA receptor extracellular region: A platform for synaptic protein interactions. J. Physiol. (2016).

  • 62.

    Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12, 5447–5454 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Barrett, T. D. et al. Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)- 1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor. Mol. Pharmacol. 79, 910–920 (2011).

    CAS  PubMed  Google Scholar 

  • 64.

    Sugiyama, M. et al. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae). Biol. Open 1, 1035–1042 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 65.

    Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66, 123–143 (2003).

    PubMed  Google Scholar 

  • 66.

    Komatsu, Y., Kishigami, S. & Mishina, Y. In situ hybridization methods for mouse whole mounts and tissue sections with and without additional beta-galactosidase staining. Methods Mol. Biol. (Clifton, N.Y.) 1092, 1–15 (2014).

    CAS  Google Scholar 

  • 67.

    Mori, T. et al. Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole, Rana pirica, using cDNA subtraction and microarray analysis. Biochem. Biophys. Res. Commun. 330, 1138–1145 (2005).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Building a more sustainable MIT — from home

    Unraveling ecosystem functioning in intertidal soft sediments: the role of density-driven interactions