in

Climate change models predict decreases in the range of a microendemic freshwater fish in Honduras

  • 1.

    Myers, B. J. E. et al. Global synthesis of the documented and projected effects of climate change on inland fishes. Rev. Fish Biol. Fish. 27(2), 339–361 (2017).

    Google Scholar 

  • 2.

    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320(5881), 1296–1297 (2008).

    CAS  PubMed  Google Scholar 

  • 3.

    Senior, R. A., Hill, J. A. & Edwards, D. P. Global loss of climate connectivity in tropical forests. Nat. Clim. Change 9, 623–626 (2019).

    ADS  Google Scholar 

  • 4.

    Dagosta, F. C. P. & de Pinna, M. C. (2019) The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Mus. Nat. Hist. 431, 1–163 (2019).

    Google Scholar 

  • 5.

    Peterson, A. T. & Soberón, J. Species distribution modeling and ecological niche modeling: getting the concepts right. Nat. Conserv. 10(2), 102–107 (2012).

    Google Scholar 

  • 6.

    Franklin, J. Species distribution models in conservation biogeography: developments and challenges. Divers. Distrib. 19, 1217–1223 (2013).

    Google Scholar 

  • 7.

    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).

    Google Scholar 

  • 8.

    Smeraldo, S. et al. Modelling risks posed by windo turbines and power lines to soaring birds: the black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).

    Google Scholar 

  • 9.

    Jensen, A. M., O’Neil, N. P., Iwaniuk, A. N. & Burg, T. M. Landscape effects on the contemporary genetic structure of Ruffled Grouse (Bonasa umbellus) populations. Ecol. Evol. 9, 5572–5592 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Villavicencio, N. A., Corcoran, D. & Marquet, P. A. Assessing the causes behind the Late Quaternary extinction of horses in South America using Species Distribution Models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00226 (2019).

    Article  Google Scholar 

  • 11.

    Lecocq, T., Harpke, A., Rasmont, P. & Schweiger, O. Integrating intraspecific differentiation in species distribution models: consequences on projections of current and future climatically suitable areas of species. Biodivers. Res. 25, 1088–1100 (2019).

    Google Scholar 

  • 12.

    Silva, C., Leiva, F. & Lastra, J. Predicting the current and future suitable habitat distributions of the anchovy (Engraulis ringens) using the Maxent model in the coastal areas off central-north Chile. Fish. Ocean. 28, 171–182 (2018).

    Google Scholar 

  • 13.

    Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 9, 11838 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Newman, C. E. & Austin, C. C. Thriving in the cold: glacial expansion and post-glacial contraction of a temperate terrestrial salamander (Plethodon serratus). PLoS ONE 10(7), e0130131 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Bagley, J. C., Sandel, M., Travis, J., Lozano-Vilano, M. L. & Johnson, J. B. Paleoclimatic modeling and phylogeography of least killifish, Heterandria formosa: insights into Pleistocene expansion-contraction dynamics and evolutionary history of North American Coastal Plain freshwater biota. BMC Evol. Biol. 13, 223 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    McMahan, C. D. et al. Pleistocene to holocene expansion of the black-belt cichlid in Central America. Vieja maculicauda (Teleostei: Cichlidae). PLoS ONE 12, e0178439 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Miller, R. R. Theraps wesseli, a new species of cichlid fish from the Caribbean slope of northern Honduras. Trop. Fish Hobbyist 44(10), 179–183 (1996).

    Google Scholar 

  • 18.

    Imbach, P. et al. Future climate change scenarios in Central America at high spatial resolution. PLoS ONE 13(4), e0193570 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 19.

    Saunders, D. L., Meeuwig, J. J. & Vincent, A. C. T. Freshwater protected areas: strategies for conservation. Conserv. Biol. 16(1), 30–41 (2002).

    Google Scholar 

  • 20.

    Lopes-Lima, M. et al. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810(1), 1014 (2018).

    Google Scholar 

  • 21.

    Matamoros, W. A., McMahan, C. D., Chakrabarty, P., Albert, J. S. & Schaefer, J. F. Derivation of the freshwater fish fauna of Central America revisited: Myers’s hypothesis in the twenty-first century. Cladistics 31(2), 177–188 (2015).

    Google Scholar 

  • 22.

    Matamoros, W. A., Kreiser, B. R. & Schaefer, J. F. A delineation of Nuclear Middle America biogeographical provinces based on river basin faunistic similarities. Rev. Fish Biol. Fish. 22, 351–365 (2012).

    Google Scholar 

  • 23.

    Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014).

    PubMed  Google Scholar 

  • 24.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    Xenopoulos, M. A. et al. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Glob. Change Biol. 11(10), 1557–1564 (2005).

    ADS  Google Scholar 

  • 26.

    Soberón, J. & Arroyo-Peña, B. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLoS ONE 12(4), e0175138 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Matamoros, W. A., Schaefer, J. F. & Kreiser, B. R. Annotated checklist of the freshwater fishes of continental and insular Honduras. Zootaxa 2307, 1–38 (2009).

    Google Scholar 

  • 28.

    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. https://doi.org/10.1038/s41467-020-15881-x (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl. Acad. Sci. U.S.A. 47, 11982–11987 (2018).

    Google Scholar 

  • 30.

    Wessel, R. Discovery, pursuit and capture of Theraps wesseli. Buntbarshe Bull. 175, 1–7 (1998).

    MathSciNet  Google Scholar 

  • 31.

    Huang, J. L. et al. Importance of spatio-temporal connectivity to maintain species experiencing range shifts. Ecography https://doi.org/10.1111/ecog.04716 (2020).

    Article  Google Scholar 

  • 32.

    Saupe, E. E. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 3, 1419–1429 (2019).

    PubMed  Google Scholar 

  • 33.

    Van Den Wollenberg, A. L. Redundancy analysis, an alternative for canonical correlation analysis. Psychometrika 42, 207–219 (1977).

    MATH  Google Scholar 

  • 34.

    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, New York, 2011).

    Google Scholar 

  • 35.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2013).

  • 36.

    Oksanen, J., et al. Vegan: community ecology package. R package, version 2.0-5. https://CRAN.R-project.org/package=vegan (2012).

  • 37.

    Phillips, S.J., Dudík, M., & Schapire, R.E. Maxent software for modeling species niches and distributions (Version 3.4.1). https://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 21 August 2019.

  • 38.

    Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • 40.

    Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papes, M. Collinearity in ecological niche modeling: confusions and challenges. Ecol. Evol. 9, 10365–10376 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    De Marco Júnior, P. & Nóbrega, C. C. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS ONE 13, e0202403 (2018).

    Google Scholar 

  • 42.

    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).

    Google Scholar 

  • 43.

    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).

    Google Scholar 

  • 44.

    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  • 45.

    Elith, J. & Leathwick, J. Predicting species distributions from museum and herbarium records using multiresponse models fitted with multivariate adaptive regression splines. Divers. Distrib. 13, 265–275 (2007).

    Google Scholar 

  • 46.

    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl. Ecol. 43, 1223–1232 (2006).

    Google Scholar 

  • 47.

    Jiménez-Valverde, A. & Lobo, J. M. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol. 31, 361–369 (2007).

    ADS  Google Scholar 

  • 48.

    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2015).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Mandibular sawing in a snail-eating snake

    Microbiota assembly, structure, and dynamics among Tsimane horticulturalists of the Bolivian Amazon