Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Analysis (Oxford University Press, Oxford, 2009).
Giménez Gómez, V. C., Verdú, J. R., Guerra Alonso, C. B. & Zurita, G. A. Relationship between land uses and diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina: which are the key factors?. Biodivers. Conserv.27, 3201–3213 (2018).
Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol. Conserv.137, 1–19 (2007).
Barragán, F., Moreno, C. E., Escobar, F., Halffter, G. & Navarrete, D. Negative impacts of human land use on dung beetle functional diversity. PLoS ONE6, e17976. https://doi.org/10.1371/journal.pone.0017976 (2011).
Giménez Gómez, V. C., Verdú, J. R., Gómez-Cifuentes, A., Vaz-de-Mello, F. Z. & Zurita, G. A. Influence of land use on the trophic niche overlap of dung beetles in the semideciduous Atlantic forest of Argentina. Insect Conserv. Divers.11, 554–564 (2018).
Gómez-Cifuentes, A., Munevar, A., Gimenez, V. C., Gatti, M. G. & Zurita, G. A. Influence of land use on the taxonomic and functional diversity of dung beetles (Coleoptera: Scarabaeinae) in the southern Atlantic forest of Argentina. J. Insect Conserv.21, 147–156 (2017).
Gómez-Cifuentes, A., Giménez Gómez, V. C., Moreno, C. & Zurita, G. A. Tree retention in cattle ranching systems partially preserves dung beetle diversity and functional groups in the semideciduous Atlantic forest. Basic Appl. Ecol.34, 64–74 (2019).
Halffter, G. & Arellano, L. Response of dung beetle diversity to human-induced changes in a tropical landscape. Biotropica34, 144–154 (2002).
Gardner, T. A., Hernández, M. I. M., Barlow, J. & Peres, C. A. Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J. Appl. Ecol45, 883–893 (2008).
Nichols, E. et al. Trait-dependent response of dung beetle populations to tropical forest conversion at local and regional scales. Ecology94, 180–189 (2013).
Sowig, P. Habitat selection and offspring survival rate in three paracoprid dung beetles: the influence of soil type and soil moisture. Ecography18, 147–154 (1995).
Davis, A. L. V., Van Aarde, R. J., Scholtz, C. H. & Delport, J. H. Increasing representation of localized dung beetles across a chronosequence of regenerating vegetation and natural dune forest in South Africa. Glob. Ecol. Biogeogr.11, 191–209 (2002).
Almeida, S., Louzada, J., Sperber, C. & Barlow, J. Subtle land use change and tropical biodiversity: dung beetle communities in Cerrado grasslands and exotic pastures. Biotropica43, 704–710 (2011).
Piccini, I. et al. Dung beetles as drivers of ecosystem multifunctionality: are response and effect traits interwoven?. Sci. Total Environ.616–617, 1440–1448 (2018).
Di Bitetti, M. S., Placci, G. & Dietz, L. A. A Biodiversity Vision for the Upper Paraná Atlantic Forest Ecoregion: Designing a Biodiversity Conservation Landscape and Setting Priorities for Conservation Action (World Wild life Fund, Gland, 2003).
Ribeiro, M. C., Metzger, J. P., Camargo Martensen, A., Ponzoni, F. J. & Hirota, M. M. The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv.142, 1141–1153 (2009).
Salomão, R. P. & Lannuzzi, L. Dung beetle (Coleoptera, Scarabaeidae) assemblage of a highly fragmented landscape of Atlantic forest: from small to the largest fragments of northeastern Brazilian region. Rev. Bras. Entomol.59, 126–131 (2015).
Bartholomew, G. A. & Heinrich, B. Endothermy in African dung beetles during flight, ball making, and ball rolling. J. Exp. Biol.73, 65–83 (1978).
Verdú, J. R., Arellano, L., Numa, C. & Micó, E. Roles of endothermy in niche differentiation for ball-rolling dung beetles (Coleoptera: Scarabaeidae) along an altitudinal gradient. Ecol. Entomol.32, 544–551 (2007).
Caveney, S., Scholtz, C. H. & McIntyre, P. Patterns of daily flight activity in onitine dung beetles (Scarabaeinae: Onitini). Oecologia103, 444–452 (1995).
Verdú, J. R., Díaz, A. & Galante, E. Thermoregulatory strategies in two closery related sympatric Scarabaeus species (Coleoptera: Scarabaeinae). Physiol. Entomol.29, 32–38 (2004).
Kingsolver, J. G. The well-temperatured biologist. Am. Nat.174, 755–768 (2009).
Reis, M. et al. A comparative study of the short term cold resistance response in distantly related Drosophila species: the role of regucalcin and frost. PLoS ONE6, e25520. https://doi.org/10.1371/journal.pone.0025520 (2011).
Harrison, J. F., Woods, H. A. & Roberts, S. P. Ecological and Environmental Physiology of Insects (Oxford University Press, Oxford, 2012).
Chown, S. L., Scholtz, C. H., Klok, C. J., Jourbet, F. J. & Coles, K. S. Ecophysiology, range contraction and survival of a geographically restricted African dung beetle (Coleoptera: Scarabaeidae). Funct. Ecol.9, 30–39 (1995).
Heath, J. E., Hanegan, J. L., Wilkin, P. J. & Heath, M. S. Adaptation to the thermal responses of insects. Integr. Comp. Biol.11, 147–158 (1971).
Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. R. Soc. Lond. B Biol. Sci.274, 771–778 (2007).
Verdú, J. R. & Lobo, J. M. Ecophysiology of thermorregulation in endothermic dung beetles: ecological and geographical implication. In Insect Ecology and Conservation (ed. Fattorini, S.) 1–28 (Research Singnpost, Trivandrum, 2008).
Krogh, A. & Zeuthen, E. The mechanism of flight preparation in some insects. J. Exp. Biol.18, 1–10 (1941).
Heinrich, B. Thermoregulation of African and European honeybees during foraging, attack, and hive exits and returns. J. Exp. Biol.80, 217–229 (1979).
Verdú, J. R., Alba-Tercedor, J. & Jiménez-Manrique, M. Evidence of different thermoregulatory mechanisms between two sympatric Scarabaeus species using infrared thermography and microcomputer tomography. PLoS ONE7, e33914. https://doi.org/10.1371/journal.pone.0033914 (2012).
Chown, S. L. & Terblanche, J. S. Physiological diversity in insects: ecological and evolutionary contexts. Adv. Insect. Physiol.33, 50–152 (2006).
Terblanche, J. S., Deere, J. A., Clusells-Trullas, S., Janion, C. & Chown, S. L. Critical thermal limits depend on methodological context. Proc. R. Soc. Lond. B Biol. Sci.274, 2935–2942 (2007).
Vorhees, A. S., Gray, E. M. & Bradley, T. J. Thermal resistance and performance correlate with climate in populations of a widespread mosquito. Physiol. Biochem. Zool.86, 73–81 (2013).
Gates, D. M. Biophysical Ecology (Springer, Berlin, 1980).
Bartholomew, G. A. & Casey, T. M. Endothermy during terrestrial activity in large beetles. Science195, 882–883 (1977).
Verdú, J. R., Arellano, L. & Numa, C. Thermoregulation in endotermic dung beetles (Coleoptera: Scarabaeidae): effect of body size and ecophysiological constraints in flight. J. Insect Physiol.52, 854–860 (2006).
Chown, S. L. & Klok, C. J. The ecological implications of physiological diversity in dung beetles. In Ecology and Evolution of Dung Beetles (eds Simmons, L. W. & Ridsdill-Smith, T. J.) 200–219 (Blackweel Publishing Ltd, Hoboken, 2011).
Oliveira-Filho, A. T. & Fontes, I. A. M. Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil and the influence of climate. Biotropica32, 793–810 (2000).
Izquierdo, A. E., De Angelo, C. D. & Aide, T. M. Thirty years of human demography and land use change in the Atlantic Forest of Misiones, Argentina: an evaluation of the forest transition model. Ecol. Soc.13, 3 (2008).
Zurita, G. A. & Bellocq, M. I. Bird assemblages in anthropogenic habitats: identifying a suitability gradient for native species in the Atlantic forest. Biotropica44, 412 (2012).
Cabrera, A. L. Fitogeografía de Argentina. Boletín de sociedad Argentina de Botánica14, 1–42 (1971).
Campanello, P. I., Montti, L., Goldstein, G. & Mac Donagh, P. Reduced impact logging and post-harvesting forest management in the Atlantic Forest: alternative approaches to enhance canopy tree growth and regeneration and to reduce the impact of invasive species. In Forest Management (ed. Grossberg, S. P.) 39–59 (Nova Science, New York, 2009).
Dufrene, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr.67, 345–366 (1997).
McGeoch, M. A. & Chown, S. L. Scaling up the value of bioindicators. Trends Ecol. Evol.13, 46–47 (1998).
McGeoch, M. A., van Rensburg, B. J. & Botes, A. The verification and application of bioindicators: a case of study of dung beetles in a savanna ecosystem. J. Appl. Ecol.39, 661–672 (2002).
McCune, B. & Mefford, M. J. Multivariate Analysis of Ecological Data, Version 4.0. MjM Software, Gleneden Beach, Oregon, U.S.A. (1999).
Hernández, M. I. M. The night and day of dung beetles (Coleoptera, Scarabaeidae) in the Serra do Japi, Brazil: elytra colour related to daily activity. Rev. Bras. Entomol.46, 597–600 (2002).
Hernández, M. I. M., Monteiro, L. R. & Favila, M. E. The role of body size and shape in understanding competitive interactions within a community of neotropical dung beetles. J. Insect Sci.11, 1–14 (2011).
Heinrich, B. Hot-blooded Insects: Strategies and Mechanisms of Thermoregulation (Harvard University Press, Cambridge, 1993).
Vannier, G. The thermobiological limits of some freezing intolerant insects: the supercooling and thermostupor points. Acta Oecol.15, 31–41 (1994).
Chown, S. L. & Nicolson, S. W. Insect Physiological Ecology: Mechanisms and Patterns (Oxford University Press, Oxford, 2004).
Gallego, B., Verdú, J. R., Carrascal, L. M. & Lobo, J. M. A protocol for analyzing thermal stress in insects using infrared thermography. J. Therm. Biol.56, 113–121 (2016).
Merrick, M. Temperature regulation in burying beetles (Nicrophorus spp.: Coleoptera: Silphidae): effects of body size, morphology and environmental temperature. J. Exp. Biol.207, 723–733 (2004).
Tyndale-Biscoe, M. Age-grading methods in adult insects: a review. Bull. Entomol. Res.74, 341–377 (1984).
Verdú, J. R., Casa, J. L., Lobo, J. M. & Numa, C. Dung beetles eat acorns to increase their ovarian development and thermal tolerance. PLoS ONE5, e10114. https://doi.org/10.1371/journal.pone.0010114 (2010).
StatsDirect Ltd StatsDirect Statistical Software, StatsDirect, U.K.
May, M. L. Thermoregulation and adaptation to temperature in dragonflies (Odonata: Anisoptera). Ecol. Monogr.46, 1–32 (1976).
Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. Thousand Oaks CA: Sage. https://socserv.socsci.mcmaster.ca/jfox/Books/Companion (2011).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67, 1–48 (2015).
Length, R. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.2.3. https://CRAN.R-project.org/package=emmeans (2018).
Dinno, A. Conover.test: conover-iman test of multiple comparisons using rank sums. R package version 1.1.4. https://CRAN.R-project.org/package=conover.test (2017).
Di Rienzo, J. A. et al. W. InfoStat version 3241 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina (2016).
Moran, D. M. Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos100, 403–405 (2013).
Campos, R. C. & Hernández, M. I. M. The importance of maize management on dung beetle communities in Atlantic forest fragment. PLoS ONE10, e0145000. https://doi.org/10.1371/journal.pone.0145000 (2015).
Filgueiras, B. K. C., Tabarelli, M., Leal, I., Vaz-De-Mello, F. Z. & Iannuzzi, L. Dung beetle persistence in human-modified landscapes: combining indicator species with anthropogenic land uses and fragmentation- related effects. Ecol. Indic.55, 65–73 (2015).
Tavares, A. et al. Eucalyptus plantations as hybrid ecosystems: implications for species conservation in the Brazilian Atlantic forest. For. Ecol. Manag.433, 131–139 (2019).
Smolka, J. et al. Dung beetles use their dung ball as a mobile thermal refuge. Curr. Biol.22, 863–864 (2012).
Verdú, J. R., Cortez, V., Oliva, D. & Giménez-Gómez, V. Thermoregulatory syndromes of two sympatric dung beetles with low energy costs. J. Insect Physiol.118, 103945. https://doi.org/10.1016/j.jinsphys.2019.103945 (2019).
Heinrich, B. & Bartholomew, G. A. Roles of endothermy and size in inter- and intraspecific competition for elephant dung in an African dung beetle, Scarabaeus laevistriatus. Physiol. Zool.52, 484–496 (1979).
Da Silva, P. G. & Hernández, M. I. M. Spatial variation of dung beetle assemblages associated with forest structure in remnants of southern Brazilian Atlantic Forest. Rev. Bras. Entomol.60, 73–81 (2016).
May, M. L. Insect thermoregulation. Annu. Rev. Entomol.24, 313–349 (1979).
Young, O. P. Perching of neotropical dung beetles on leaf surfaces: an example of behavioral thermoregulation?. Biotropica16, 324–327 (1984).
Heinrich, B. Insect thermoregulation. Endeavour19, 28–33 (1995).
Edney, E. B. Body temperatures of tenebrionid beetles in the Namib Desert of Southern Africa. J. Exp. Biol.55, 253–272 (1971).
Casey, T. M. Thermoregulation and heat exchange. Adv. Insect Physiol.20, 119–146 (1988).
Halffter, G. & Matthews, E. G. The natural history of dung beetles of the subfamily Scarabaeinae (Coleoptera: Scarabaeidae). Soc. Mex. Entomol.14, 1–312 (1966).
Audino, L. D., Louzada, J. & Comita, L. Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity?. Biol. Conserv.169, 248–257 (2014).
Beiroz, W. et al. Spatial and temporal shifts in functional and taxonomic diversity of dung beetles in a human-modified tropical forest landscape. Ecol. Indic.95, 518–526 (2018).
Gómez-Cifuentes, A., Vespa, N., Semmanrtín, M. & Zurita, G. A. Canopy cover is a key factor to preserve the ecological functions of dung beetles in the southern Atlantic Forest. Appl. Soil Ecol.154, 103652. https://doi.org/10.1016/j.apsoil.2020.103652 (2020).
Source: Ecology - nature.com