in

Bending the curve of terrestrial biodiversity needs an integrated strategy

  • 1.

    IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).

  • 2.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).

    PubMed  Google Scholar 

  • 3.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).

    Google Scholar 

  • 4.

    Mehrabi, Z., Ellis, E. C. & Ramankutty, N. The challenge of feeding the world while conserving half the planet. Nat. Sustain. 1, 409–412 (2018).

    Google Scholar 

  • 5.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 9.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    PubMed  Google Scholar 

  • 11.

    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Van Vuuren, D. P. et al. Pathways to achieve a set of ambitious global sustainability objectives by 2050: explorations using the IMAGE integrated assessment model. Technol. Forecast. Soc. Change 98 303–323 (2015).

    Google Scholar 

  • 13.

    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Liveright, 2016).

  • 14.

    Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. A 365, 2053–2075 (2007).

    ADS  MathSciNet  PubMed  Google Scholar 

  • 15.

    IPBES. Summary for Policymakers of the Methodological Assessment of Scenarios and Models of Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2016).

  • 16.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Google Scholar 

  • 17.

    Efron, B. & Tibshirani, R. Statistical data analysis in the computer age. Science 253, 390–395 (1991).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).

    PubMed  Google Scholar 

  • 19.

    McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Newbold, T., Sanchez-Ortiz, K., De Palma, A., Hill, S. L. L. & Purvis, A. Reply to ‘The biodiversity intactness index may underestimate losses’. Nat. Ecol. Evol. 3, 864–865 (2019).

    PubMed  Google Scholar 

  • 22.

    Martin, P. A., Green, R. E. & Balmford, A. The biodiversity intactness index may underestimate losses. Nat. Ecol. Evol. 3, 862–863 (2019).

    PubMed  Google Scholar 

  • 23.

    Phalan, B. et al. How can higher-yield farming help to spare nature? Science 351, 450–451 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    Lambin, E. F. & Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl Acad. Sci. USA 108, 3465–3472 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Pimm, S. L., Jenkins, C. N. & Li, B. V. How to protect half of Earth to ensure it protects sufficient biodiversity. Sci. Adv. 4, eaat2616 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Mouquet, N. et al. Predictive ecology in a changing world. J. Appl. Ecol. 52, 1293–1310 (2015).

    Google Scholar 

  • 28.

    Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 29.

    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Eker, S., Rovenskaya, E., Obersteiner, M. & Langan, S. Practice and perspectives in the validation of resource management models. Nat. Commun. 9, 5359 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • 32.

    Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Google Scholar 

  • 33.

    Leclère, D. et al. Supporting material for the article entitled “Bending the curve of terrestrial biodiversity needs an integrated strategy” [Data Collection]. http://dare.iiasa.ac.at/57/ (2020).

  • 34.

    van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).

    Google Scholar 

  • 35.

    IUCN & UNEP-WCMC. The World Database on Protected Areas (WDPA). https://www.protectedplanet.net/ (UNEP-WCMC, accessed October 2017).

  • 36.

    Key Biodiversity Area Partnership World Database of Key Biodiversity Areas. http://www.keybiodiversityareas.org/site/requestgis (BirdLife International, accessed 5 October 2017).

  • 37.

    Allan, J. R., Venter, O. & Watson, J. E. M. Temporally inter-comparable maps of terrestrial wilderness and the last of the wild. Sci. Data 4, 170187 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Scholes, R. J. & Biggs, R. A biodiversity intactness index. Nature 434, 45–49 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 39.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    PubMed  Google Scholar 

  • 40.

    Hurtt, G. et al. Harmonization of global land-use change and management for the period 850–2100. Preprint at https://doi.org/10.5194/gmd-2019-360 (2020).

  • 41.

    IUCN. Red List of Threatened Species. version 2017.3 http://www.iucnredlist.org (2017).

  • 42.

    BirdLife International & Handbook of the Birds of the World. Bird Species Distribution Maps of the World. version 7.0. http://datazone.birdlife.org/species/requestdis (2017).

  • 43.

    Harfoot, M. et al. Integrated assessment models for ecologists: the present and the future. Glob. Ecol. Biogeogr. 23, 124–143 (2014).

    Google Scholar 

  • 44.

    Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [basic] Manual. Discussion Paper Series No. 2012-01 (Center for Social and Environmental Systems Research, NIES, 2012).

  • 45.

    Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 580, 787–796 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).

    ADS  PubMed  Google Scholar 

  • 47.

    Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0: Model Description and Policy Applications. https://www.pbl.nl/en/publications/integrated-assessment-of-global-environmental-change-with-IMAGE-3.0 (Netherlands Environmental Assessment Agency (PBL), 2014).

  • 48.

    Woltjer, G. et al. The MAGNET Model: Module Description. https://edepot.wur.nl/310764 (LEI, part of Wageningen University and Research Centre, The Hague, 2014).

  • 49.

    Popp, A. et al. Land-use protection for climate change mitigation. Nat. Clim. Change 4, 1095–1098 (2014).

    ADS  CAS  Google Scholar 

  • 50.

    Brooks, T. M. et al. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Sci. Data 3, 160007 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Klein Goldewijk, K., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Google Scholar 

  • 52.

    Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).

    Google Scholar 

  • 54.

    Rondinini, C. & Visconti, P. Scenarios of large mammal loss in Europe for the 21st century. Conserv. Biol. 29, 1028–1036 (2015).

    PubMed  Google Scholar 

  • 55.

    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).

    ADS  Google Scholar 

  • 56.

    Ferrier, S., Manion, G., Elith, J. & Richardson, K. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers. Distrib. 13, 252–264 (2007).

    Google Scholar 

  • 57.

    Di Marco, M. et al. Projecting impacts of global climate and land-use scenarios on plant biodiversity using compositional-turnover modelling. Glob. Change Biol. 25, 2763–2778 (2019).

    ADS  Google Scholar 

  • 58.

    Hoskins, A. J. et al. BILBI: supporting global biodiversity assessment through high-resolution macroecological modelling. Environ. Model. Softw. 104806 (2020).

  • 59.

    Chaudhary, A. & Brooks, T. M. National Consumption and Global Trade Impacts on Biodiversity. World Dev. 121, 178–187 (2017).

    Google Scholar 

  • 60.

    UNEP & SETAC. Global Guidance for Life Cycle Impact Assessment Indicators, vol. 1 (United Nations Environment Programme, 2016).

  • 61.

    Chaudhary, A., Verones, F., de Baan, L. & Hellweg, S. Quantifying land use impacts on biodiversity: combining species–area models and vulnerability indicators. Environ. Sci. Technol. 49, 9987–9995 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 62.

    Alkemade, R. et al. GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12, 374–390 (2009).

    Google Scholar 

  • 63.

    De Palma, A. et al. Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012. Preprint at https://doi.org/10.1101/311688 (2018).

  • 64.

    Hill, S. L. L. et al. Worldwide impacts of past and projected future land-use change on local species richness and the Biodiversity Intactness Index. Preprint at https://doi.org/10.1101/311787 (2018).

  • 65.

    Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures. Adv. Ecol. Res. 58, 201–241 (2018).

    Google Scholar 

  • 66.

    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2019).


  • Source: Ecology - nature.com

    Velcro-like food sensor detects spoilage and contamination

    A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances