in

GPS-telemetry unveils the regular high-elevation crossing of the Himalayas by a migratory raptor: implications for definition of a “Central Asian Flyway”

  • 1.

    Webster, M. S., Marra, P. P., Haig, S. M., Bensch, S. & Holmes, R. T. Links between worlds: unraveling migratory connectivity. Trends Ecol. Evol. 17, 76–83 (2002).

    Google Scholar 

  • 2.

    Newton, I. The migration ecology of birds (Elsevier-Academic Press, London, 2008).

    Google Scholar 

  • 3.

    Schaub, M., Kania, W. & Köppen, U. Variation of primary production during winter induces synchrony in survival rates in migratory white storks Ciconia ciconia. J. Anim. Ecol. 74, 656–666 (2005).

    Google Scholar 

  • 4.

    Higuchi, H. et al. Migration of Honey-buzzards Pernis apivorus based on satellite tracking. Ornithol. Sci. 4, 109–115 (2005).

    Google Scholar 

  • 5.

    Takekawa, J. et al. Geographic variation in Bar-headed Geese Anser indicus: connectivity of wintering areas and breeding grounds across a broad front. Wildfowl 59, 100–123 (2009).

    Google Scholar 

  • 6.

    Batbayar, N. & Lee, H. Steppe eagle migration from Mongolia to India. In Bird migration across the Himalayas: wetland functioning amidst mountains and glaciers (eds Prins, H. H. T. & Namgali, T.) 117–127 (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  • 7.

    Dixon, A., Rahman, L., Sokolov, A. & Sokolov, V. A. Peregrine falcons crossing the ‘roof of the world.’ In Bird migration across the Himalayas: wetland functioning amidst mountains and glaciers (eds Prins, H. H. & Namgali, T.) 53–67 (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  • 8.

    Zalles, J. I. & Bildstein, K. L. Raptor watch: a global directory of raptor migration sites (Hawk Mountain Sanctuary, Kempton, 2000).

    Google Scholar 

  • 9.

    Den Besten, J. W. Migration of Steppe Eagles Aquila nipalensis and other raptors along the Himalayas past Dharamsala, India, in autumn 2001 and spring 2002. Forktail 20, 9–13 (2004).

    Google Scholar 

  • 10.

    Juhant, M. A. & Bildstein, K. L. Raptor migration across and around the Himalayas. In Bird migration across the Himalayas: wetland functioning amidst mountains and glaciers, pp 98–116 (eds Prins, H. H. & Namgali, T.) (Cambridge University Press, Cambridge, 2017).

    Google Scholar 

  • 11.

    Clark, N. E., Boakes, E. H., Mcgowan, P. J. K., Mace, G. M. & Fuller, R. A. Protected areas in South Asia have not prevented habitat loss: a study using historical models of land-use change. PLoS ONE 8, e65298 (2013).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 12.

    Malakoff, D., Wigginton, N. S., Fahrenkamp-Uppenbrink, J. & Wible, B. Rise of the urban planet. Science 80, 272 (2016).

    Google Scholar 

  • 13.

    Yasue, M., Feare, C. J., Bennun, L. & Fiedler, W. The epidemiology of H5N1 Avian influenza in wild birds: why we need better ecological data. Bioscience 56, 923–929 (2006).

    Google Scholar 

  • 14.

    Yanjie, Xu., Gong, P., Wielstra, B. & Si, Y. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus. Sci. Rep. 6, 30262 (2016).

    Google Scholar 

  • 15.

    Palm, E. C. et al. Mapping migratory flyways in Asia using dynamic Brownian bridge movement models. Mov. Ecol. 3, 3 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Parr, N. et al. High altitude flights by ruddy shelduck Tadorna ferruginea during trans-Himalayan migrations. J. Avian Biol. 48, 1310–1315 (2017).

    Google Scholar 

  • 17.

    Galushin, V. M. A huge urban population of birds of prey in Delhi India. Ibis (Lond. 1859) 113, 522 (1971).

    Google Scholar 

  • 18.

    Kumar, N., Jhala, Y. V., Qureshi, Q., Gosler, A. G. & Sergio, F. Human-attacks by an urban raptor are tied to human subsidies and religious practices. Sci. Rep. 9, 2545 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Kumar, N. et al. The population density of an urban raptor is inextricably tied to human cultural practices. Proc. R. Soc. B Biol. Sci. 286, 20182932 (2019).

    Google Scholar 

  • 20.

    Naoroji, R. Birds of prey of the Indian subcontinent (Christopher Helm, London, 2006).

    Google Scholar 

  • 21.

    Ferguson-Lees, J. & Christie, D. A. Raptors of the world. (2001).

  • 22.

    Choudhury, A. Migration of Black-eared Kite or Large Indian Kite Milvus migrans lineatus(Gray) from Mongolia to North-Eastern India. J. Bombay Nat. Hist. Soc. 102, 229–230 (2003).

    Google Scholar 

  • 23.

    Forsman, D. Identification of black-eared kite. Bird. World 16, 56–60 (2003).

    Google Scholar 

  • 24.

    DeCandido, R., Subedi, T., Siponen, M., Sutasha, K. & Pierce, A. Flight identification of Milvus migrans lineatus ‘Black-eared’Kite and Milvus migrans govinda ‘Pariah’Kite in Nepal and Thailand. Bird. ASIA 20, 32–36 (2013).

    Google Scholar 

  • 25.

    Scott, G. R. Elevated performance: the unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455 (2011).

    PubMed  CAS  Google Scholar 

  • 26.

    Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).

    ADS  PubMed  CAS  Google Scholar 

  • 27.

    Sergio, F. et al. Migration by breeders and floaters of a long-lived raptor: implications for recruitment and territory quality. Anim. Behav. 131, 59–72 (2017).

    Google Scholar 

  • 28.

    Panuccio, M., Agostini, N., Mellone, U. & Bogliani, G. Circannual variation in movement patterns of the Black Kite (Milvus migrans migrans): a review. Ethol. Ecol. Evol. 26, 1–18 (2014).

    Google Scholar 

  • 29.

    Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–950 (1999).

    Google Scholar 

  • 30.

    Sergio, F., Blas, J., Forero, M. G., Donazar, J. A. & Hiraldo, F. Sequential settlement and site dependence in a migratory raptor. Behav. Ecol. 18, 811–821 (2007).

    Google Scholar 

  • 31.

    Bildstein, K. L. Migrating raptors of the world: their ecology & conservation (Cornell University Press, Cornell, 2006).

    Google Scholar 

  • 32.

    Flack, A. et al. Costs of migratory decisions: a comparison across eight white stork populations. Science Advances 2, e1500931 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 33.

    Board, C. P. C. Solid waste management in slaughterhouses (Ministry of Environment and Forests, Government of India, 2004).

    Google Scholar 

  • 34.

    Kumar, N. et al. Habitat selection by an avian top predator in the tropical megacity of Delhi: human activities and socio-religious practices as prey-facilitating tools. Urban Ecosyst. 21, 339–349 (2018).

    Google Scholar 

  • 35.

    Meyburg, B.-U. & Meyburg, C. GPS-Satelliten-Telemetrie bei einem adulten Schwarzmilan (Milvus migrans): Aufenthaltsraum während der Brutzeit, Zug und Überwinterung. Popul. Greifvogel und Eulenarten 6, 311–352 (2009).

    Google Scholar 

  • 36.

    Blanco, G. et al. Integrating population connectivity into pollution assessment: overwintering mixing reveals flame retardant contamination in breeding areas in a migratory raptor. Environ. Res. 166, 553–561 (2018).

    PubMed  CAS  Google Scholar 

  • 37.

    Sergio, F. et al. No effect of satellite tagging on survival, recruitment, longevity, productivity and social dominance of a raptor, and the provisioning and condition of its offspring. J. Appl. Ecol. 52, 1665–1675 (2015).

    Google Scholar 

  • 38.

    Tanferna, A., López-Jiménez, L., Blas, J., Hiraldo, F. & Sergio, F. Different location sampling frequencies by satellite tags yield different estimates of migration performance: pooling data requires a common protocol (migration estimates by satellite tracking). PLoS ONE 7, e49659 (2012).

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • 39.

    Seaman, D. E. & Powell, R. A. An evaluation of the accuracy of Kernel density estimators for home range analysis. Ecology 77, 2075–2085 (1996).

    Google Scholar 

  • 40.

    Terraube, J. et al. Broad wintering range and intercontinental migratory divide within a core population of the near-threatened pallid harrier. Divers. Distrib. 18, 401–409 (2012).

    Google Scholar 

  • 41.

    DeCandido, R., Gurung, S., Subedi, T. & Allen, D. The east–west migration of Steppe Eagle Aquila nipalensis and other raptors in Nepal and India. Bird ASIA 19, 18–25 (2013).

    Google Scholar 

  • 42.

    Subedi, T. R. et al. Population structure and annual migration pattern of Steppe Eagles at Thoolakharka Watch Site, Nepal, 2012–2014. J. Raptor Res. 51, 165–171 (2017).

    Google Scholar 


  • Source: Ecology - nature.com

    Publisher Correction: Science diplomacy for plant health

    Validating the physics behind the new MIT-designed fusion experiment