Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529. https://doi.org/10.1146/annurev.micro.55.1.485 (2001).
Koops, H.-P. & Pommerening-Röser, A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1–9. https://doi.org/10.1111/j.1574-6941.2001.tb00847.x (2001).
Monteiro, M., Seneca, J. & Magalhaes, C. The history of aerobic ammonia oxidizers: From the first discoveries to today. J. Microbiol. 52, 537–547. https://doi.org/10.1007/s12275-014-4114-0 (2014).
Lehtovirta-Morley, L. E. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fny058 (2018).
Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543. https://doi.org/10.1038/nature03911 (2005).
Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504. https://doi.org/10.1038/nature16461 (2015).
van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555. https://doi.org/10.1038/nature16459 (2015).
Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809. https://doi.org/10.1038/nature04983 (2006).
Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–979. https://doi.org/10.1038/nature08465 (2009).
Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531. https://doi.org/10.1016/j.tim.2012.08.001 (2012).
Shen, J. P., Zhang, L. M., Zhu, Y. G., Zhang, J. B. & He, J. Z. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ. Microbiol. 10, 1601–1611. https://doi.org/10.1111/j.1462-2920.2008.01578.x (2008).
Tourna, M., Freitag, T. E., Nicol, G. W. & Prosser, J. I. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–1364. https://doi.org/10.1111/j.1462-2920.2007.01563.x (2008).
Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071. https://doi.org/10.1038/ismej.2010.191 (2011).
Wang, Y. F., Li, X. Y. & Gu, J. D. Differential responses of ammonia/ammonium-oxidizing microorganisms in mangrove sediment to amendment of acetate and leaf litter. Appl. Microbiol. Biotechnol. 98, 3165–3180. https://doi.org/10.1007/s00253-013-5318-7 (2014).
Sahan, E. & Muyzer, G. Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiol. Ecol. 64, 175–186. https://doi.org/10.1111/j.1574-6941.2008.00462.x (2008).
Saha, M., Sarkar, A. & Bandhophadhyay, B. Introduction to establish the comparative analysis of 16S rRNA gene sequences with amoA and nxrA for nitrifying bacteria isolated from East Kolkata wetland: An International Ramsar Site. J. Aquac. Res. Dev. https://doi.org/10.4172/2155-9546.1000270 (2014).
Watson, S. W. Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus sp. n.. Limnol. Oceanogr. 10, 274–289 (1965).
Campbell, M. A. et al. Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world’s oceans: Calls to validate the names ‘Nitrosococcus halophilus’ and ‘Nitrosomonas mobilis’. FEMS Microbiol. Ecol. 76, 39–48. https://doi.org/10.1111/j.1574-6941.2010.01027.x (2011).
Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing gamma-proteobacterium from soil. ISME J. 11, 1130–1141. https://doi.org/10.1038/ismej.2016.191 (2017).
Koops, H.-P., Böttcher, B., Möller, U. C., Pommerening-Röser, A. & Stehr, G. Description of a new species of Nitrosococcus. Arch. Microbiol. 154, 244–248. https://doi.org/10.1007/bf00248962 (1990).
Garrity, G. M., Bell, J. A., Lilburn, T. F. & I. , Nitrosomonadaceae fam nov. In Bergey’s Manual of Systematic Bacteriology, second edition, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria) (eds Brenner, D. J. et al.) 864 (Springer, New York, 2006).
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996. https://doi.org/10.1038/nbt.4229 (2018).
Schoer, J. H. Determination of the origin of suspended matter and sediments in the Elbe Estuary using natural tracers. Estuaries 13, 161–172. https://doi.org/10.2307/1351585 (1990).
Groengroeft, A. et al. Distribution of metals in sediments of the Elbe estuary in 1994. Water Sci. Technol. 37, 109–116. https://doi.org/10.1016/S0273-1223(98)00189-9 (1998).
Kleisinger, C., Haase, H., Hentschke, U. & Schubert, B. Contamination of sediments in the German North Sea Estuaries Elbe, Weser and Ems and its sensitivity to climate change. In (eds. Heiniger P. & Cullmann J.) 129–149 (Springer International Publishing, Geneva, 2015).
Reese, A., Zimmermann, T., Profrock, D. & Irrgeher, J. Extreme spatial variation of Sr, Nd and Pb isotopic signatures and 48 element mass fractions in surface sediment of the Elbe River Estuary—Suitable tracers for processes in dynamic environments?. Sci. Total Environ. 668, 512–523. https://doi.org/10.1016/j.scitotenv.2019.02.401 (2019).
Rotthauwe, J. H., Witzel, K. P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17(3), 2011. https://doi.org/10.14806/ej.17.1.200 (2011).
Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).
Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5 2nd edn. (Cambridge University Press, Cambridge, 2014).
Hammer, Ø, Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
Holmes, A. J., Costello, A., Lidstrom, M. E. & Murrell, J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132, 203–208. https://doi.org/10.1016/0378-1097(95)00311-r (1995).
Okano, Y. et al. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl. Environ. Microbiol. 70, 1008–1016. https://doi.org/10.1128/aem.70.2.1008-1016.2004 (2004).
Stehr, G., Böttcher, B., Dittberner, P., Rath, G. & Koops, H.-P. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol. Ecol. 17, 177–186. https://doi.org/10.1016/0168-6496(95)00022-3 (1995).
Koops, H. P., Böttcher, B., Möller, U. C., Pommerening-Röser, A. & Stehr, G. Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov.. Microbiology 137, 1689–1699. https://doi.org/10.1099/00221287-137-7-1689 (1991).
Suwa, Y., Sumino, T. & Noto, K. Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. J. Gen. Appl. Microbiol. 43, 373–379 (1997).
Koops, H. P., Purkhold, U., Pommerening-Roser, A., Timmermann, G. & Wagner, M. The lithoautotrophic ammonia-oxidizing bacteria. In The Prokaryotes: An Evoluting Electronic Resource for the Microbiological Community (ed. Dworkin, M.) (Springer, New York, 2003).
Ballinger, S. J., Head, I. M., Curtis, T. P. & Godley, A. R. Molecular microbial ecology of nitrification in an activated sludge process treating refinery wastewater. Water Sci. Technol. 37, 105–108. https://doi.org/10.1016/S0273-1223(98)00091-2 (1998).
Gieseke, A., Purkhold, U., Wagner, M., Amann, R. & Schramm, A. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl. Environ. Microbiol. 67, 1351–1362. https://doi.org/10.1128/aem.67.3.1351-1362.2001 (2001).
Dionisi, H. M. et al. Quantification of Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and Nitrospira spp. from full-scale wastewater treatment plants by competitive PCR. Appl. Environ. Microbiol. 68, 245–253. https://doi.org/10.1128/AEM.68.1.245-253.2002 (2002).
Harms, G. et al. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37, 343–351. https://doi.org/10.1021/es0257164 (2003).
Qin, Y. Y., Li, D. T. & Yang, H. Investigation of total bacterial and ammonia-oxidizing bacterial community composition in a full-scale aerated submerged biofilm reactor for drinking water pretreatment in China. FEMS Microbiol. Lett. 268, 126–134. https://doi.org/10.1111/j.1574-6968.2006.00571.x (2007).
Regan, J. M., Harrington, G. W. & Noguera, D. R. Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system. Appl. Environ. Microbiol. 68, 73–81 (2002).
Stehr, G. et al. Exopolymers: An ecological characteristic of a floc-attached, ammonia-oxidizing bacterium. Microb. Ecol. 30, 115–126 (1995).
Bollmann, A. & Laanbroek, H. J. Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary. Aquat. Microb. Ecol. 28, 239–247 (2002).
Cébron, A., Coci, M., Garnier, J. & Laanbroek, H. J. Denaturing gradient gel electrophoretic analysis of ammonia-oxidizing bacterial community structure in the lower Seine River: Impact of Paris wastewater effluents. Appl. Environ. Microbiol. 70, 6726–6737. https://doi.org/10.1128/aem.70.11.6726-6737.2004 (2004).
Cao, H., Hong, Y., Li, M. & Gu, J. D. Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl. Microbiol. Biotechnol. 94, 247–259. https://doi.org/10.1007/s00253-011-3636-1 (2012).
Limpiyakorn, T., Shinohara, Y., Kurisu, F. & Yagi, O. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol. Ecol. 54, 205–217. https://doi.org/10.1016/j.femsec.2005.03.017 (2005).
Winogradsky, S. & Winogradsky, H. Etudes sur la microbiologie du sol. VII Nouvelles recherches sur les organismes de la nitrification. Ann. Inst Pasteur 50, 350–432 (1933).
Watson, S. W. Reisolation of Nitrosospira briensis S. Winogradsky and H. Winogradsky 1933. Archiv fur Mikrobiologie 75, 179–188. https://doi.org/10.1007/bf00408979 (1971).
Urakawa, H. et al. Nitrosospira lacus sp. nov., a psychrotolerant, ammonia-oxidizing bacterium from sandy lake sediment. Int. J. Syst. Evol. Microbiol. 65, 242–250. https://doi.org/10.1099/ijs.0.070789-0 (2015).
Harms, H., Koops, H. P. & Wehrmann, H. An ammonia-oxidizing bacterium, Nitrosovibrio tenuis nov. gen. nov. sp. Arch. Microbiol. 108, 105–111. https://doi.org/10.1007/bf00425099 (1976).
Watson, S. W., Graham, L. B., Remsen, C. C. & Valois, F. W. A lobular, ammonia-oxidizing bacterium, Nitrosolobus multiformis nov. gen. nov. sp. Archiv fur Mikrobiologie 76, 183–203. https://doi.org/10.1007/bf00409115 (1971).
Hiorns, W. D. et al. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment. Microbiology 141(Pt 11), 2793–2800. https://doi.org/10.1099/13500872-141-11-2793 (1995).
Hastings, R. C. et al. Direct molecular biological analysis of ammonia oxidising bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiol. Ecol. 23, 45–54. https://doi.org/10.1111/j.1574-6941.1997.tb00390.x (1997).
Ceccherini, M. T. et al. Effects of swine manure on autotrophic ammonia-oxidizing bacteria in soil microcosms. Appl. Soil Ecol. 7, 149–157 (1998).
Martikainen, P. J. & Nurmiaho-Lassila, E.-L. Nitrosospira, an important ammonium-oxidizing bacterium in fertilized coniferous forest soil. Can. J. Microbiol. 31, 190–197. https://doi.org/10.1139/m85-037 (1985).
Kowalchuk, G. A., Stienstra, A. W., Heilig, G. H., Stephen, J. R. & Woldendorp, J. W. Changes in the community structure of ammonia-oxidizing bacteria during secondary succession of calcareous grasslands. Environ. Microbiol. 2, 99–110 (2000).
Speksnijder, A. G., Kowalchuk, G. A., Roest, K. & Laanbroek, H. J. Recovery of a Nitrosomonas-like 16S rDNA sequence group from freshwater habitats. Syst. Appl. Microbiol. 21, 321–330. https://doi.org/10.1016/s0723-2020(98)80040-4 (1998).
Whitby, C. B., Saunders, J. R., Pickup, R. W. & McCarthy, A. J. A comparison of ammonia-oxidiser populations in eutrophic and oligotrophic basins of a large freshwater lake. Antonie Van Leeuwenhoek 79, 179–188. https://doi.org/10.1023/A:1010202211368 (2001).
Burrell, P. C., Phalen, C. M. & Hovanec, T. A. Identification of Bacteria Responsible For Ammonia Oxidation In Freshwater Aquaria. Appl. Environ. Microbiol. 67, 5791–5800. https://doi.org/10.1128/aem.67.12.5791-5800.2001 (2001).
Spieck, E., Meincke, M. & Bock, E. Taxonomic diversity of Nitrosovibrio strains isolated from building sandstones. FEMS Microbiol. Ecol. 11, 21–26. https://doi.org/10.1111/j.1574-6968.1992.tb05791.x (1992).
Nugroho, R. A., Roling, W. F., Laverman, A. M., Zoomer, H. R. & Verhoef, H. A. Presence of Nitrosospira cluster 2 bacteria corresponds to N transformation rates in nine acid Scots pine forest soils. FEMS Microbiol. Ecol. 53, 473–481. https://doi.org/10.1016/j.femsec.2005.02.002 (2005).
Stephen, J. R., McCaig, A. E., Smith, Z., Prosser, J. I. & Embley, T. M. Molecular diversity of soil and marine 16S rRNA gene sequences related to beta-subgroup ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 62, 4147–4154 (1996).
Phillips, C. J., Smith, Z., Embley, T. M. & Prosser, J. I. Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Northwestern Mediterranean Sea. Appl. Environ. Microbiol. 65, 779–786 (1999).
Bano, N. & Hollibaugh, J. T. Diversity and distribution of DNA sequences with affinity to ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the Arctic Ocean. Appl. Environ. Microbiol. 66, 1960–1969 (2000).
McCaig, A. E., Embley, T. M. & Prosser, J. I. Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 120, 363–367 (1994).
Nicolaisen, M. H. & Ramsing, N. B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50, 189–203 (2002).
Freitag, T. E., Chang, L. & Prosser, J. I. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient. Environ. Microbiol. 8, 684–696. https://doi.org/10.1111/j.1462-2920.2005.00947.x (2006).
Wankel, S. D., Mosier, A. C., Hansel, C. M., Paytan, A. & Francis, C. A. Spatial variability in nitrification rates and ammonia-oxidizing microbial communities in the agriculturally impacted Elkhorn Slough estuary, California. Appl. Environ. Microbiol. 77, 269–280. https://doi.org/10.1128/aem.01318-10 (2011).
Jacob, J., Sanders, T. & Dähnke, K. Nitrite consumption and associated isotope changes during a river flood event. Biogeosciences 13, 5649–5659. https://doi.org/10.5194/bg-13-5649-2016 (2016).
Voynova, Y. G., Brix, H., Petersen, W., Weigelt-Krenz, S. & Scharfe, M. Extreme flood impact on estuarine and coastal biogeochemistry: The 2013 Elbe flood. Biogeosciences 14, 541–557. https://doi.org/10.5194/bg-14-541-2017 (2017).
Pommerening-Röser, A., Rath, G. & Koops, H. P. Phylogenetic diversity within the genus Nitrosomonas. Syst. Appl. Microbiol. 19, 344–351. https://doi.org/10.1016/S0723-2020(96)80061-0 (1996).
Nacke, H. et al. Links between seawater flooding, soil ammonia oxidiser communities and their response to changes in salinity. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fix144 (2017).
Laanbroek, H. J., Keijzer, R. M., Verhoeven, J. T. & Whigham, D. F. The distribution of ammonia-oxidizing betaproteobacteria in stands of black mangroves (Avicennia germinans). Front. Microbiol. 3, 153. https://doi.org/10.3389/fmicb.2012.00153 (2012).
Juretschko, S. et al. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64, 3042–3051 (1998).
Daims, H. et al. Nitrification in sequencing biofilm batch reactors: Lessons from molecular approaches. Water Sci. Technol. 43, 9–18 (2001).
Source: Ecology - nature.com