in

Individual species provide multifaceted contributions to the stability of ecosystems

[adace-ad id="91168"]
  • 1.

    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    CAS  Article  Google Scholar 

  • 2.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl Acad. Sci. USA 117, 13596–13602 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

    CAS  Article  Google Scholar 

  • 8.

    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Donohue, I. et al. On the dimensionality of ecological stability. Ecol. Lett. 16, 421–429 (2013).

    PubMed  Article  Google Scholar 

  • 10.

    Macdougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494, 86–89 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Kéfi, S. et al. Advancing our understanding of ecological stability. Ecol. Lett. 22, 1349–1356 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Donohue, I. et al. Loss of predator species, not intermediate consumers, triggers rapid and dramatic extinction cascades. Glob. Change Biol. 23, 2962–2972 (2017).

    Article  Google Scholar 

  • 14.

    Sanders, D., Thébault, E., Kehoe, R. & Frank van Veen, F. J. Trophic redundancy reduces vulnerability to extinction cascades. Proc. Natl Acad. Sci. USA 115, 2419–2424 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    O’Connor, N. E., Bracken, M. E., Crowe, T. P. & Donohue, I. Nutrient enrichment alters the consequences of species loss. J. Ecol. 103, 862–870 (2015).

    Article  Google Scholar 

  • 16.

    O’Connor, N. E. & Donohue, I. Environmental context determines multi-trophic effects of consumer species loss. Glob. Change Biol. 19, 431–440 (2013).

    Article  Google Scholar 

  • 17.

    O’Connor, N. E. & Crowe, T. P. Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86, 1783–1796 (2005).

    Article  Google Scholar 

  • 18.

    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

    Article  Google Scholar 

  • 21.

    O’Gorman, E. J. & Emmerson, M. C. Perturbations to trophic interactions and the stability of complex food webs. Proc. Natl Acad. Sci. USA 106, 13393–13398 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 1973).

  • 24.

    McCann, K. S. The diversity–stability debate. Nature 405, 228–233 (2000).

    CAS  Article  Google Scholar 

  • 25.

    Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).

    Article  Google Scholar 

  • 30.

    Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1927 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Díaz, S., Symstad, A. J., Chapin, F. S., Wardle, D. A. & Huenneke, L. F. Functional diversity revealed by removal experiments. Trends Ecol. Evol. 18, 140–146 (2003).

    Article  Google Scholar 

  • 32.

    Borrvall, C. & Ebenman, B. Early onset of secondary extinctions in ecological communities following the loss of top predators. Ecol. Lett. 9, 435–442 (2006).

    PubMed  Article  Google Scholar 

  • 33.

    Petchey, O. L., Eklöf, A., Borrvall, C. & Ebenman, B. Trophically unique species are vulnerable to cascading extinction. Am. Nat. 171, 568–579 (2008).

    PubMed  Article  Google Scholar 

  • 34.

    Kardol, P., Fanin, N. & Wardle, D. A. Long-term effects of species loss on community properties across contrasting ecosystems. Nature 557, 710–713 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).

    PubMed  Article  Google Scholar 

  • 36.

    Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).

    Article  Google Scholar 

  • 37.

    de Mazancourt, C. et al. Predicting ecosystem stability from community composition and biodiversity. Ecol. Lett. 16, 617–625 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Neubert, M. & Caswell, H. Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology 78, 653–665 (2012).

    Article  Google Scholar 

  • 39.

    Arnoldi, J. F., Loreau, M. & Haegeman, B. Resilience, reactivity and variability: a mathematical comparison of ecological stability measures. J. Theor. Biol. 389, 47–59 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Naeem, S. Advancing realism in biodiversity research. Trends Ecol. Evol. 23, 414–416 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Mrowicki, R. J., Maggs, C. A. & O’Connor, N. E. Consistent effects of consumer species loss across different habitats. Oikos 124, 1555–1563 (2015).

    Article  Google Scholar 

  • 42.

    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Hillebrand, H. & Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecol. Lett. 23, 575–585 (2020).

    PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Hoover, D. L., Knapp, A. K. & Smith, M. D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95, 2646–2656 (2014).

    Article  Google Scholar 

  • 45.

    Johns, K. A., Osborne, K. O. & Logan, M. Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef. Coral Reefs 33, 553–563 (2014).

    Article  Google Scholar 

  • 46.

    Gülzow, N., Muijsers, F., Ptacnik, R. & Hillebrand, H. Functional and structural stability are linked in phytoplankton metacommunities of different connectivity. Ecography 40, 719–732 (2016).

    Article  Google Scholar 

  • 47.

    Garnier, A., Pennekamp, F., Lemoine, M. & Petchey, O. L. Temporal scale dependent interactions between multiple environmental disturbances in microcosm ecosystems. Glob. Change Biol. 23, 5237–5248 (2017).

    Article  Google Scholar 

  • 48.

    Yang, Q., Fowler, M. S., Jackson, A. L. & Donohue, I. The predictability of ecological stability in a noisy world. Nat. Ecol. Evol. 3, 251–259 (2019).

    PubMed  Article  Google Scholar 

  • 49.

    Pimm, S. L., Donohue, I., Montoya, J. M. & Loreau, M. Measuring resilience is essential to understand it. Nat. Sustain. 2, 895–897 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Cardinale, B. J. et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA 104, 18123–18128 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Mrowicki, R. J., O’Connor, N. E. & Donohue, I. Temporal variability of a single population can determine the vulnerability of communities to perturbations. J. Ecol. 104, 887–897 (2016).

    Article  Google Scholar 

  • 52.

    Griffin, J. N. et al. Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118, 1335–1342 (2009).

    Article  Google Scholar 

  • 53.

    Emmerson, M. C., Solan, M., Emes, C., Paterson, D. M. & Raffaelli, D. Consistent patterns and the idiosyncstatic effects of biodiversity in marine ecosystems. Nature 411, 73–77 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Baert, J. M., Eisenhauer, N., Janssen, C. R. & de Laender, F. Biodiversity effects on ecosystem functioning respond unimodally to environmental stress. Ecol. Lett. 21, 1191–1199 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Vye, S., Dick, J. T. A., Emmerson, M. C. & O’Connor, N. E. Cumulative effects of an invasive species and nutrient enrichment on rock pool communities. Mar. Ecol. Prog. Ser. 594, 39–50 (2018).

    CAS  Article  Google Scholar 

  • 56.

    Thiébaut, E. et al. Changes in a benthic system exposed to multiple stressors: a 40-year time-series in the English Channel. PeerJ Prepr. 6, e26745v1 (2018).

    Google Scholar 

  • 57.

    Houbin, C., Thiébaut, E. & Hoebeke, M. Study of specific diversity of macrobenthic communities in the ‘Pierre Noire’ site: Dataset/Sampling event (Station Biologique de Roscoff – Sorbonne Université-CNRS, 2018); https://doi.org/10.21411/kfms-pq29

  • 58.

    O’Connor, N. E., Donohue, I., Crowe, T. P. & Emmerson, M. C. Importance of consumers on exposed and sheltered rocky shores. Mar. Ecol. Prog. Ser. 443, 65–75 (2011).

    Article  Google Scholar 

  • 59.

    O’Connor, N. E., Emmerson, M. C., Crowe, T. P. & Donohue, I. Distinguishing between direct and indirect effects of predators in complex ecosystems. J. Anim. Ecol. 82, 438–448 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Byrnes, J. E. & Stachowicz, J. J. The consequences of consumer diversity loss: different answers from different experimental designs. Ecology 90, 2879–2888 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Firth, L. B. & Crowe, T. P. Competition and habitat suitability: small-scale segregation underpins large-scale coexistence of key species on temperate rocky shores. Oecologia 162, 163–174 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Crowe, T. P. et al. Large-scale variation in combined impacts of canopy loss and disturbance on community structure and ecosystem functioning. PLoS ONE 8, e66238 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Benedetti-Cecchi, L., Tamburello, L., Maggi, E. & Bulleri, F. Experimental perturbations modify the performance of early warning indicators of regime shift. Curr. Biol. 25, 1867–1872 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 64.

    Griffin, J. N. et al. Consumer effects on ecosystem functioning in rock pools: roles of species richness and composition. Mar. Ecol. Prog. Ser. 420, 45–56 (2010).

    Article  Google Scholar 

  • 65.

    Griffin, J. N., Méndez, V., Johnson, A. F., Jenkins, S. R. & Foggo, A. Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos 118, 37–44 (2009).

    Article  Google Scholar 

  • 66.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 67.

    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).

    Article  Google Scholar 

  • 68.

    Clarke, K. R. Non‐parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).

    Article  Google Scholar 

  • 69.

    White, L., O’Connor, N., Yang, Q., Emmerson, M. & Donohue, I. Individual species provide multifaceted contributions to the stability of ecosystems_Dataset (Version 1). Zenodo https://doi.org/10.5281/zenodo.3974299 (2020).

  • 70.

    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Whittaker, F. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).

    Article  Google Scholar 

  • 72.

    Lande, R. Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76, 5–13 (1996).

    Article  Google Scholar 

  • 73.

    Olden, J. D., Poff, N. L. R., Douglas, M. R., Douglas, M. E. & Fausch, K. D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18–24 (2004).

    PubMed  Article  Google Scholar 

  • 74.

    France, K. E. & Duffy, J. E. Diversity and dispersal interactively affect predictability of ecosystem function. Nature 441, 1139–1143 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 75.

    Wang, S. et al. An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nat. Commun. 8, 15211 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Gravel, D., Massol, F. & Leibold, M. A. Stability and complexity in model meta-ecosystems. Nat. Commun. 7, 12457 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77

    Deep amoA amplicon sequencing reveals community partitioning within ammonia-oxidizing bacteria in the environmentally dynamic estuary of the River Elbe