in

Physical properties of epilithic river biofilm as a new lead to perform pollution bioassessments in overseas territories

  • 1.

    Monnier, O., Basilico, L., Reyjol, Y. et al. La bioindication en outre-mer: Situation et perspectives dans le contexte de la directive cadre sur l’eau. Synthèse du séminaire ONEMA «Méthodes de bioindication adaptées aux départements d’outre-mer » Paris, France (2016). https://www.seminaire-evaluation-outremer.oieau.fr/.

  • 2.

    Jackson, D. A., Peres-Neto, P. R. & Olden, J. D. What controls who is where in freshwater fish communities: the roles of biotic, abiotic, and spatial factors. Can. J. Fish. Aquat. Sci. 58, 157–170 (2001).

    Google Scholar 

  • 3.

    Battin, T. et al. The ecology and biogeochemistry of stream biofilms. Nat. Rev. Microbiol. 14, 251–263 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 4.

    Abreu, P. C. et al. Importance of biofilm as food source for shrimp (Farfantepenaeus paulensis) evaluated by stable isotopes (d13C and d15N). J. Exp. Mar. Biol. Ecol. 347, 88–96 (2007).

    CAS  Article  Google Scholar 

  • 5.

    Lefrançois, E. et al. Epilithic biofilm as a key factor for small-scale river fisheries on Caribbean islands. Fish. Manag. Ecol. 18, 211–220 (2011).

    Article  Google Scholar 

  • 6.

    Smith, W. E. Reproductive ecology of Caribbean amphidromous fishes. Ph. D. North Carolina State University (2012).

  • 7.

    Mc Dowall, R. M. Diadromy: origins and definitions of terminology. Copeia 1, 248–251 (1992).

    Article  Google Scholar 

  • 8.

    Keith, P. Biology and ecology of amphidromous Gobiidae of the Indo-Pacific and the Caribbean regions. J. Fish Biol. 63, 831–847 (2003).

    Article  Google Scholar 

  • 9.

    Coat, S. & Monti, D. Lack of significance of usual ecological indicators in predicting pesticides contamination: specificities of tropical islands freshwaters. In: Proceedings of the 15th meeting of the Caribbean academy of sciences, May 21–23, 79–80 (2006).

  • 10.

    Bertrand, J. A., Abarnou, A., Bocquené, G. et al. Diagnostic de la contamination chimique de la faune halieutique des littoraux des Antilles françaises. Campagnes 2008 en Martinique et en Guadeloupe. Ifremer, Martinique. https://www.ifremer.fr/docelec/doc/2009/rapport-6896.pdf (2009).

  • 11.

    Coat, S. Identification du réseau trophique de rivière et étude de sa contamination par les pesticides organochlorés (Chlordécone et ß-HCH) en Guadeloupe. Thèse de Doctorat de l’Université des Antilles et de la Guyane, UFR SEN, Campus de Fouillole (2009).

  • 12.

    Multigner, L. et al. Chlordecone exposure and risk of prostate cancer. J. Clin. Oncol. 28, 3457–3462 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Foster, R. Kepone: the ‘Flour’ factory. In Richmondmag (2005). https://richmondmagazine.com/news/kepone-disaster-pesticide.

  • 14.

    Sanders, H. O. et al. Biological effects of Kepone and mirex in freshwater invertebrates. Arch. Environ. Contam. Toxicol. 10, 531–539 (1981).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Orndorff, S. A. & Colwell, R. R. Distribution and degradation potential of Kepone resistant bacteria in the James River and Upper Chesapeake Bay. In Workshop: Microbial Degradation of Pollutants in Marine Environments, EPA-600/9-79-012 (eds. Bourquin, A. W. & Pritchard, P. H.) 396–407. EPA Environmental Research Information Center, Cincinnati, Ohio (1979).

  • 16.

    Orndorff, S. A. & Colwell, R. R. Distribution and characterization of kepone-resistant bacteria in the aquatic environment. Appl. Environ. Microbiol. 39, 611–622 (1980).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Mahaffey, W. R., Pritchard, P. H. & Bourquin, A. W. Effects of kepone on growth and respiration of several estuarine bacteria. Appl. Environ. Microbiol. 43, 1419–1424 (1982).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Hödl, I. et al. Voronoi tessellation captures very early clustering of single primary cells as induced by interactions in nascent biofilms. PLoS ONE 6(10), e26368 (2011).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 19.

    Tamaru, Y. et al. Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium. Nostoc Commune Appl. Environ. Microbiol. 71, 7327–7333 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Or, D., Phutane, S. & Dechesne, A. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils. Vadose Zone J. 6, 298–305 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Battin, T. J. et al. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426, 439–442 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 22.

    Lawrence, J.R., Neu, T.R., Paule, A. et al. Aquatic biofilms: development, cultivation, analyses, and applications. In Manual of Environmental Microbiology (ed. Yates, M., Nakatsu, C., Miller, R., Pillai, S., 4th edn, 4.2.3-1–4.2.3-33 (ASM, Washington, 2016).

  • 23.

    Flemming, H. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Mora-Gómez, J., Freixa, A., & Perujo, N. et al. Limits of the biofilm concept and types of aquatic biofilms. Aquat. Biofilms. Ecol. Water Qual. Wastewater Treat. 229, 3-27 (2016).

  • 25.

    Holmström, C. et al. Inhibition of common fouling organisms by marine bacterial isolates with special reference to the role of pigmented bacteria. Biofouling 10, 251–259 (1996).

    PubMed  Article  Google Scholar 

  • 26.

    Callow, J. A. et al. Cellular and molecular approaches to understanding primary adhesion in Enteromorpha: an overview. Biofouling 16, 141–150 (2000).

    CAS  Article  Google Scholar 

  • 27.

    Bozorg, A., Gates, I. D. & Sen, A. Real time monitoring of biofilm development under flow conditions in porous media. Biofouling 28, 937–951 (2012).

    PubMed  Article  Google Scholar 

  • 28.

    Rubol, S. et al. Seeing through porous media: an experimental study for unveiling interstitial flows. Hydrol. Process. 32, 402–407 (2018).

    ADS  Article  Google Scholar 

  • 29.

    Kundukad, B. et al. Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. Soft Matter 12, 5718 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 30.

    Morita, Y. et al. Frictional properties of regenerated cartilage in vitro. J. Biomech. 39, 103–109 (2006).

    PubMed  Article  Google Scholar 

  • 31.

    Grad, S. et al. Sliding motion modulates stiffness and friction coefficient at the surface of tissue engineered cartilage. Osteoarthr. Cartil. 20, 288–295 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 32.

    Souza, J. C. et al. Biofilms inducing ultra-low friction on titanium. J. Dent. Res. 89, 1470–1475 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Garrett, T. R., Bhakoo, M. & Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci. 18, 1049–1056 (2008).

    CAS  Article  Google Scholar 

  • 34.

    Schultz, M. P. et al. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings. Biofouling 31, 759–773 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 35.

    Ditsche, P. et al. More than just slippery: the impact of biofilm on the attachment of non-sessile freshwater mayfly larvae. J. R. Soc. Interface 11, 20130989 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Rubol, S. et al. Linking biofilm spatial structure to real-time microscopic oxygen decay imaging. Biofouling 34, 200–211 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Larson, F. et al. Surface adhesion measurements in aquatic biofilms using magnetic particle induction: MagPI. Limnol. Oceanogr. Methods 7, 490–497 (2009).

    Article  Google Scholar 

  • 38.

    Gerbersdorf, S. U. et al. New insights into MagPI: a promising tool to determine the adhesive capacity of biofilm on the mesoscale. Biofouling 34, 618–629 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Passarelli, C. et al. Surface adhesion of microphytobenthic biofilms is enhanced under Hediste diversicolor (O.F. Muller) trophic pressure. J. Exp. Mar. Biol. Ecol. 438, 52–60 (2012).

    Article  Google Scholar 

  • 40.

    Thom, M. et al. Seasonal biostabilization and erosion behavior of fluvial biofilms under different hydrodynamic and light conditions. Int. J. Sediment Res. 30, 273–284 (2015).

    Article  Google Scholar 

  • 41.

    Schmidt, H. et al. The effect of seasonality upon the development of lotic biofilms and microbial biostabilisation. Freshw. Biol. 61, 963–978 (2016).

    CAS  Article  Google Scholar 

  • 42.

    Schmidt, H. et al. Exposure to silver nanoparticles affects biofilm structure and adhesiveness. J. Aquatic Pollut. Toxicol. 1, 1–9 (2017).

    Google Scholar 

  • 43.

    Oliver, W. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Cense, A. W. et al. Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J. Microbiol. Methods 67, 463–472 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Minatchy, G. et al. Influence of the volume structure on the tribological properties of lamellar tribofilms. Tribol. Lett. 61, 1–15 (2016).

    CAS  Article  Google Scholar 

  • 46.

    Gloag, E. S. et al. Biofilm mechanics: implications in infection and survival. Biofilm 2, 100017 (2020).

    Article  Google Scholar 

  • 47.

    Malavoi, J. R. Typologie des faciès d’écoulement ou unités morphodynamiques des cours d’eau à haute énergie. Bull. fr. pêche piscic. 315, 189–210 (1989).

    Article  Google Scholar 

  • 48.

    Bahner, L. H. et al. Kepone bioconcentration, accumulation, loss, and transfer through estuarine food chains. Chesapeake Sci. 18, 299–308 (1977).

    CAS  Article  Google Scholar 

  • 49.

    Lange-Bertalot, H. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64, 285–304 (1979).

    Google Scholar 

  • 50.

    Smol, J. P. & Stoermer, E. F. The Diatoms: Applications for the Environmental and Earth Sciences 2nd edn. (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  • 51.

    Lobo, E. et al. Diatoms as Bioindicators in Rivers. In River Algae (ed. Orlando Necchi, J. R.) 245–271 (Springer, Berlin, 2016).

    Google Scholar 

  • 52.

    Shoaib, N. et al. Toxicity of pesticides on photosynthesis of diatoms. Pak. J. Bot. 43, 2067–2069 (2011).

    CAS  Google Scholar 

  • 53.

    Ebenezer, V. & Ki, J. S. Quantification of toxic effects of the organochlorine insecticide endosulfan on marine green algae, diatom and dinoflagellate. Indian J. Mar. Sci. 43, 393–399 (2014).

    Google Scholar 

  • 54.

    Karthikeyan, P., Mohan, D. & Jaikumar, M. Growth inhibition effect of organophosphate pesticide monocrotophos on marine diatoms. Indian J. Mar. Sci. 44, 1516–1520 (2015).

    Google Scholar 

  • 55.

    Bruckner, C. G. et al. Growth and release of extracellular organic compounds by benthic diatoms depend on interactions with bacteria. Environ. Microbiol. 13, 1052–1063 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Yang, C. et al. The possible role of bacterial signal molecules N-acyl homoserine lactones in the formation of diatom-biofilm (Cylindrotheca sp.). Mar. Pollut. Bull. 107, 118–124 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    Tapolczai, K. et al. Trait-based ecological classifications for benthic algae: review and perspectives. Hydrobiologia 776, 117 (2016).

    Article  Google Scholar 

  • 58.

    Pandey, L. K. & Bergey, E. A. Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Sci. Total Environ. 550, 372–381 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 59.

    Wu, N. et al. Using river microalgae as indicators for freshwater biomonitoring: review of published research and future directions. Ecol. Indic. 81, 124–131 (2017).

    CAS  Article  Google Scholar 

  • 60.

    Coquillé, N. et al. Use of diatom motility features as endpoints of metolachlor toxicity. Aquat. Toxicol. 158, 202–210 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 61.

    Rimet, F. & Bouchez, A. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl. Manag. Aquat. Ecosyst. 406, 1–12 (2012).

    Article  Google Scholar 

  • 62.

    Sedki, M. et al. Online-monitoring of biofilm formation using nanostructured electrode surfaces. Mater. Sci. Eng. C 100, 178–185 (2019).

    CAS  Article  Google Scholar 

  • 63.

    Gómez-Gómez, B. et al. Fate and effect of in-house synthesized tellurium based nanoparticles on bacterial biofilm biomass and architecture. Challenges for nanoparticles characterization in living systems. Sci. Total Environ. 719, 137501 (2020).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 64.

    Wang, X. et al. Manganese/polymetallic nodules: Micro-structural characterization of exolithobiontic- and endolithobiontic microbial biofilms by scanning electron microscopy. Micron 40, 350–358 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 65.

    Rabiller-Baudry, M. et al. Coupling of SEM-EDX and FTIR-ATR to (quantitatively) investigate organic fouling on porous organic composite membranes. Curr. Microsc. Contrib. Adv. Sci. Technol. 10, 1066–1076 (2012).

    Google Scholar 

  • 66.

    Li, N. et al. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiol. Res. 171, 73–77 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 67.

    Zhou, J., Mopper, K. & Passow, U. The role of surface-active carbohydrates in the formation of transparent exopolymer particles by bubble adsorption of seawater. Limnol. Oceanogr. 43, 1860–1871 (1998).

    ADS  CAS  Article  Google Scholar 

  • 68.

    Hansson, P. M. et al. Frictional forces between hydrophilic and hydrophobic particle coated nanostructured surfaces. Phys. Chem. Chem. Phys. 15, 17893–17902 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 69.

    Thorp, J. H. & Delong, M. D. Dominance of autochtonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96, 543–550 (2002).

    Article  Google Scholar 

  • 70.

    ODE971. Database Office de l’Eau Guadeloupe. https://www.observatoire-eau-guadeloupe.fr/outils/base-de-donnees/cours-deau/physico-chimie-et-chimie.

  • 71.

    Cravo-Laureau, C. et al. Microbial responses to pollution-ecotoxicology: introducing the different biological levels. In Microbial Ecotoxicology (eds Cravo-Laureau, C. et al.) (Springer, New York, 2017).

    Google Scholar 

  • 72.

    Tapie, N., Kanan, R., Pardon, P. et al. Utilisation d’échantillonneurs passifs de type POCIS pour le suivi de la contamination Chlordécone des eaux de la Guadeloupe. 44ème congrès du Groupe Français des Pesticides (GFP), 26–29 mai 2014, Schœlcher, Martinique (2014).

  • 73.

    Tapie, N., Risser, T., Pardon, P. et al. Calibration d’échantillonneurs passifs de type POCIS pour le suivi de la contamination des eaux en Chlordécone. 46ème congrès du Groupe Français des Pesticides (GFP), 17–19 mai 2016, Bordeaux, France (2016).

  • 74.

    Dubois, M. et al. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    CAS  Article  Google Scholar 

  • 75.

    Raunkjaer, K., Hvitved-Jacobsen, T. & Nielsen, P. H. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res. 28, 251–262 (1994).

    CAS  Article  Google Scholar 

  • 76.

    Stoermer, E. F. et al. Paleolimnological evidence of rapid recent change in Lake Erie’s trophic status. Can. J. Fish. Aquat. Sci. 53, 1451–1458 (1996).

    Article  Google Scholar 

  • 77.

    Oliver, W. C. & Pharr, G. M. Measurement of hardness and elastic modulus by instrumental indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004).

    ADS  CAS  Article  Google Scholar 

  • 78.

    Fischer-Cripps, A. C. Nanoindentation (2nd ed. Softcover of orig. ed. 2004). Collection: Mechanical Engineering Series (Springer, New York, 2010).

    Google Scholar 

  • 79.

    Cattan, P., Berns, A.E., Cabidoche, Y.-M. et al.Quel devenir pour la Chlordécone? CHLORDEXCO, La contamination d’écosystèmes antillais 20 ans après l’application de l’organochloré. In Journée ANR Huit ans de recherche en environnement, dernières découvertes et innovations, Paris, France, 11 décembre 2012. https://agritrop.cirad.fr/569760/.

  • 80.

    Tonetto, A. F., Branco, C. C. Z. & Peres, C. K. The effects of irradiance and spectral composition on the establishment of macroalgae in streams. Annales de Limnologie-Int. J. Limnol. 48, 363–370 (2012).

    Article  Google Scholar 

  • 81.

    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017).

  • 82.

    Ward, J. H. Jr. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963).

    MathSciNet  Article  Google Scholar 

  • 83.

    Pollard, K. & van der Laan, M. A method to identify significant clusters in gene expression data Sixth World Multiconference on Systemics. Cybern. Inf. 6, 318–325 (2002).

    Google Scholar 


  • Source: Ecology - nature.com

    Superconductor technology for smaller, sooner fusion

    Solar-powered system extracts drinkable water from “dry” air