Van Pelt, R., Sillett, S. C., Kruse, W. A., Freund, J. A. & Kramer, R. D. Emergent crowns and light-use complementarity lead to global maximum biomass and leaf area in Sequoia sempervirens forests. For. Ecol.Manag. 375, 279–308 (2016).
Fujimori, T. Stem biomass and structure of a mature sequoia sempervirens stand on the Pacific Coast of Northern California. J. Jpn. For. Soc. 59(12), 435–441 (1977).
Busing, R. T. & Fujimori, T. Biomass, production and woody detritus in an old coast redwood (Sequoia sempervirens) forest. Plant Ecol. 177, 177–188 (2005).
Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428(6985), 851 (2004).
Carder, A. C. Forest Giants of the World, Past and Present (Fitzhenry & Whiteside, Markham, 1995).
Harrison, J. G., Forister, M. L., Parchman, T. L. & Koch, G. W. Vertical stratification of the foliar fungal community in the world’s tallest trees. Am. J. Bot. 103(12), 2087–2095 (2016).
Sillett, S. C. et al. Increasing wood production through old age in tall trees. For. Ecol. Manag. 259, 976–994 (2010).
Sillett, S. C. et al. Allometric equations for Sequoia sempervirens in forests of different ages. For. Ecol. Manag. 433, 349–363 (2019).
Kizha, A. R. & Han, H.-S. Predicting aboveground biomass in second growth coast redwood: Comparing localized with generic allometric models. Forests 7, 96 (2016).
Parks, W.H. Redwood log characteristics: Sapwood thickness, bark thickness and log taper. Report number 1.20121. California Redwood Association, San Francisco (1952).
Keith, H., Mackey, B. G. & Lindenmayer, D. B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Nat. Acad. Sci. 106(28), 11635–11640 (2009).
Slik, J. F. et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeog. 22(12), 1261–1271 (2013).
Lindenmayer, D. B. & Laurance, W. F. The ecology, distribution, conservation and management of large old trees. Biol. Rev. 92(3), 1434–1458 (2016).
Rüger, N. et al. Demographic trade-offs predict tropical forest dynamics. Science 368(6487), 165–168 (2020).
Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145(1), 87–99 (2005).
Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20(10), 3177–3190 (2014).
Burt, A. et al. Assessment of bias in pan-tropical biomass predictions. Front. For. Glob. Change Trop. For.https://doi.org/10.3389/ffgc.2020.00012 (2020).
Sillett, S. C., Van Pelt, R., Kramer, R. D., Caroll, A. L. & Koch, G. W. Biomass and growth potential of Eucalyptus regnans up to 100 m tall. For. Ecol. Manag. 348, 78–91 (2015).
Sillett, S. C. et al. How do tree structure and old age affect growth potential of California redwoods?. Ecol. Monog. 85(2), 181–212 (2015).
Kramer, R. D., Sillett, S. C. & Van Pelt, R. Quantifying aboveground components of Picea sitchensis for allometric comparisons among tall conifers in North American rainforests. For. Ecol. Manag. 430, 59–77 (2018).
Niklas, K. J. Influence of tissue density-specific mechanical properties on the scaling of plant height. Ann. Bot. 72, 173–179 (1993).
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Luxford, R. F. & Markwardt, L. J. The strength and related properties of redwood. USDA Tech. Bull. 305, 20 (1932).
Wilson, P. L., Funck, W. J. & Avery, R. B. Fuelwood characteristics of northwestern conifers and hardwoods. Res. Bull. 60, 42 (1987).
Miles, P. D. & Smith, B. Specific gravity and other properties of wood and bark for 156 tree species found in North America. Res. Note NRS-38. Newtown Square, PA: U.S. (2009), Department of Agriculture, Forest Service, Northern Research Station, p. 35.
Clark, D. B. & Kellner, J. R. Tropical forest biomass estimation and the fallacy of misplaced concreteness. J. Veg. Sci. 23(6), 1191–1196 (2012).
Momo, S. T. et al. Using volume-weighted average wood specific gravity of trees reduces bias in aboveground biomass predictions from forest volume data. For. Ecol. Manag. 424, 519–528 (2018).
Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J. & Hérault, B. Biomass: An r package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 8(9), 1163–1167 (2017).
Chave, L. et al. Ground data are vital for remote sensing missions. In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 863–880 (2019).
Duncanson, L. et al. The importance of global land product validation: Towards a standardized protocol for aboveground biomass. In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space. (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 979–999 (2019).
Disney, M. I. Terrestrial LiDAR: A 3D revolution in how we look at trees. New Phytol. 222(4), 1736–1741 (2018).
Disney, M. I. et al. Weighing trees with lasers: Advances, challenges and opportunities. R. Soc. Interface Focus 8, 2. https://doi.org/10.1098/rsfs.2017.0048 (2018).
Calders, K. et al. Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol. Evol. 6(2), 198–208 (2015).
Gonzalez de Tanago, J. et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR. Methods Ecol. Evol. 9(2), 223–234 (2018).
Momo Takoudjou, S. et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 9(4), 905–916 (2018).
Stovall, A. E., Anderson-Teixeira, K. J. & Shugart, H. H. Assessing terrestrial laser scanning for developing non-destructive biomass allometry. Forest Ecol. Manag. 427, 217–229 (2018).
Disney, M. I., Burt, A., Calders, K., Schaaf, C. & Stovall, A. Innovations in ground and airborne technologies as reference and for training and validation: Terrestrial laser scanning (TLS). In Surveys in Geophysics vol 71: Forest Biomass and Structure from Space. (eds Scipal, K., Dubyah, R., Le Toan, T., Quegan, S., Cazenave, A., Lopez, T.) 40 (4), 937–958 (2019).
Lau, A. et al. Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling. Trees 32, 1219–1231 (2018).
Shenkin, A. et al. The world’s tallest tropical tree in three dimensions. Front. For. Glob. Change.https://doi.org/10.3389/ffgc.2019.00032 (2019).
Verbeeck, H. et al. Time for a plant structural economics spectrum. Front. For. Glob. Change. 2, 43. https://doi.org/10.3389/ffgc.2019.00043 (2019).
Duncanson, L. et al. Implications of allometric model selection for county-level biomass mapping. Carbon Balance Manag. 12(1), 18 (2017).
Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).
Enquist, B. J. Universal scaling in tree and vascular plant allometry: Toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiol. 22, 1045–1064 (2002).
Niklas, K. J. A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytol. 171, 27–40 (2006).
Hunter, M. O., Keller, M., Victoria, D. & Morton, D. C. Tree height and tropical forest biomass estimation. Biogeosciences 10(12), 8385–8399 (2013).
Wilkes, P. et al. Data acquisition considerations for terrestrial laser scanning of forest plots. Rem. Sens. Environ. 196, 140–153 (2017).
Burt, A., Disney, M. I. & Calders, K. Extracting individual trees from lidar point clouds using treeseg. Methods Ecol. Evol. 10(3), 438–445 (2018).
Douhovnikoff, V. & Dodd, R. S. Clonal spread in second growth stands of coast redwood, sequoia sempervirens. In: Standiford, R. B. et al., technical editors. Proceedings of the Redwood Region Forest Science Symposium 2007: What Does the Future Hold? Gen. Tech. Rep. PSW-GTR-194. Albany, CA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture. Vol 194, 65–72 (2007).
Raumonen, P. et al. Comprehensive quantitative tree models from terrestrial laser scanner data. Remote Sens. 5(2), 491–520. https://doi.org/10.3390/rs5020491 (2013).
Olofsson, K., Holmgren, J. & Olsson, H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sens. 6(5), 4323–4344 (2014).
Bellock, K. E. Alphashape Python toolbox, v 1.0.1. https://pypi.org/project/alphashape/ (2019).
Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49(1), 12–35 (2003).
Chojnacky, D. C., Heath, L. S. & Jenkins, J. C. Updated generalized biomass equations for North American tree species. Forestry 87(1), 129–151 (2014).
Source: Ecology - nature.com