in

High prevalence of mcr-1-encoded colistin resistance in commensal Escherichia coli from broiler chicken in Bangladesh

  • 1.

    Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8, 207–217 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Herrero-Fresno, A., Larsen, I. & Olsen, J. E. Genetic relatedness of commensal Escherichia coli from nursery pigs in intensive pig production in Denmark and molecular characterization of genetically different strains. J. Appl. Microbiol. 119, 342–353 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 3.

    Ahmed, S., Olsen, J. E. & Herrero-Fresno, A. The genetic diversity of commensal Escherichia coli strains isolated from nonantimicrobial treated pigs varies according to age group. PLoS ONE 12, e0178623 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Magiorakos, A.-P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 18, 268–281 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    de Been, M. et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 10, e1004776 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Salinas, L. et al. Diverse commensal Escherichia coli clones and plasmids disseminate antimicrobial resistance genes in domestic animals and children in a semirural community in Ecuador. mSphere 4, e00316-19 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Marshall, B. M. & Levy, S. B. Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24, 718–733 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Hoelzer, K. et al. Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence?. BMC Vet. Res. 13, 211 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Islam, K. B. M. S., Shiraj-Um-Mahmuda, S. & Md, H.-B.-K. Antibiotic usage patterns in selected broiler farms of Bangladesh and their public health implications. J. Public Heal. Dev. Ctries. 2, 276–284 (2016).

    Google Scholar 

  • 10.

    Mendelson, M. et al. The One Health stewardship of colistin as an antibiotic of last resort for human health in South Africa. Lancet Infect. Dis. 18, e288–e294 (2018).

    PubMed  Article  Google Scholar 

  • 11.

    Xavier, B. B. et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance 21, 30280 (2016).

    Article  Google Scholar 

  • 12.

    Yin, W. et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio 8, e00543-17 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Carattoli, A. et al. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 22, 30589 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Borowiak, M. et al. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp enterica serovar Paratyphi B. J. Antimicrob. Chemother. 72, 3317–3324 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    AbuOun, M. et al. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J. Antimicrob. Chemother. 72, 2745–2749 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Yang, Y.-Q., Li, Y.-X., Lei, C.-W., Zhang, A.-Y. & Wang, H.-N. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J. Antimicrob. Chemother. 73, 1791–1795 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Wang, X. et al. Emergence of a novel mobile colistin resistance gene, mcr-8 NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 7, 1–9 (2018).

    PubMed Central  PubMed  Google Scholar 

  • 18.

    Carroll, L. M. et al. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio 10, e00853-e919 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Liu, Y.-Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 20.

    Ahmed, S., Olsen, J. E. & Herrero-Fresno, A. The genetic diversity of commensal Escherichia coli strains isolated from non-antimicrobial treated pigs varies according to age group. PLoS ONE 12, e0178623 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Katouli, M. et al. Phenotypic characterization of intestinal Escherichia coli of pigs during suckling, postweaning, and fattening periods. Appl. Environ. Microbiol. 61, 778–783 (1995).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Bok, E., Mazurek, J. & Stosik, M. P. Age as a factor influencing diversity of commensal E. coli microflora in pigs. Polish J. Microbiol. 62, 165–171 (2013).

    Article  Google Scholar 

  • 23.

    Eiamphungporn, W. et al. Prevalence of the colistin resistance gene mcr-1 in colistin-resistant Escherichia coli and Klebsiella pneumoniae isolated from humans in Thailand. J. Glob. Antimicrob. Resist. 15, 32–35 (2018).

    PubMed  Article  Google Scholar 

  • 24.

    Li, X. et al. The prevalence of mcr-1 and resistance characteristics of Escherichia coli isolates from diseased and healthy pigs. Diagn. Microbiol. Infect. Dis. 91, 63–65 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Irrgang, A. et al. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010–2015. PLoS ONE 11, e0159863 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Quan, J. et al. Prevalence of mcr-1 in Escherichia coli and Klebsiella pneumoniae recovered from bloodstream infections in China: a multicentre longitudinal study. Lancet Infect. Dis. 17, 400–410 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Cao, L., Li, X., Xu, Y. & Shen, J. Prevalence and molecular characteristics of mcr-1 colistin resistance in Escherichia coli: isolates of clinical infection from a Chinese University Hospital. Infect. Drug Resist. 11, 1597–1603 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Yi, L., Liu, Y., Wu, R., Liang, Z. & Liu, J.-H. Research progress on the plasmid-mediated colistin resistance gene mcr-1. Yi chuan 39, 110–126 (2017).

    PubMed  Google Scholar 

  • 29.

    Amin, M. B. et al. Occurrence and genetic characteristics of mcr-1-positive colistin-resistant E. coli from poultry environments in Bangladesh. J. Glob. Antimicrob. Resist. 22, 546–552 (2020).

    PubMed  Article  Google Scholar 

  • 30.

    Zając, M. et al. Occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011–2016. Front. Microbiol. 10, 1753 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Maciuca, I. E. et al. Genetic features of mcr-1 mediated colistin resistance in CMY-2-producing Escherichia coli from Romanian poultry. Front. Microbiol. 10, 2267 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Zhang, P. et al. Characterization of five Escherichia coli isolates co-expressing ESBL and mcr-1 resistance mechanisms from different origins in China. Front. Microbiol. 10, 1994 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Bengtsson-Palme, J., Kristiansson, E. & Larsson, D. G. J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 42, 68–80 (2018).

    CAS  Article  Google Scholar 

  • 34.

    Poulsen, L. L. et al. Longitudinal study of transmission of Escherichia coli from broiler breeders to broilers. Vet. Microbiol. 207, 13–18 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Nilsson, O., Börjesson, S., Landén, A. & Bengtsson, B. Vertical transmission of Escherichia coli carrying plasmid-mediated AmpC (pAmpC) through the broiler production pyramid. J. Antimicrob. Chemother. 69, 1497–1500 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Lukjancenko, O., Wassenaar, T. M. & Ussery, D. W. Comparison of 61 sequenced Escherichia coli genomes. Microb. Ecol. 60, 708–720 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Fukiya, S., Mizoguchi, H., Tobe, T. & Mori, H. Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J. Bacteriol. 186, 3911–3921 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    Touchon, M. et al. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. 5, e1000344 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 39.

    Tettelin, H. et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial ‘pan-genome’. Proc. Natl. Acad. Sci. 102, 13950–13955 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Yamamoto, T. & Echeverria, P. Detection of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene sequences in enterotoxigenic E. coli strains pathogenic for humans. Infect. Immun. 64, 1441–1445 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Levine, M. M. Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis. 155, 377–389 (1987).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Johnson, T. J., Wannemuehler, Y. M. & Nolan, L. K. Evolution of the iss gene in Escherichia coli. Appl. Environ. Microbiol. 74, 2360–2369 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Kocsis, E., Lo Cascio, G., Piccoli, M., Cornaglia, G. & Mazzariol, A. KPC-3 carbapenemase harbored in FIIk plasmid from Klebsiella pneumoniae ST512 and Escherichia coli ST43 in the same patient. Microb. Drug Resist. 20, 377–382 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Chiluisa-Guacho, C. et al. First detection of the CTXM-15 producing Escherichia coli O25-ST131 pandemic clone in Ecuador. Pathogens 7, 42 (2018).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • 45.

    Karami, N., Nowrouzian, F., Adlerberth, I. & Wold, A. E. Tetracycline resistance in Escherichia coli and persistence in the infantile colonic microbiota. Antimicrob. Agents Chemother. 50, 156–161 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Monira, S. et al. Multi-drug resistant pathogenic bacteria in the gut of young children in Bangladesh. Gut Pathog. 9, 19 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 47.

    Bryan, A., Shapir, N. & Sadowsky, M. J. Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains isolated from diverse human and animal sources. Appl. Environ. Microbiol. 70, 2503–2507 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Birgy, A. et al. CTX-M-55-, MCR-1-, and FosA-producing multidrug-resistant Escherichia coli infection in a child in France. Antimicrob. Agents Chemother. 62, e00127-e218 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Nakamura, S., Nakamura, M., Kojima, T. & Yoshida, H. gyrA and gyrB mutations in quinolone-resistant strains of Escherichia coli. Antimicrob. Agents Chemother. 33, 254–255 (1989).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Vila, J., Ruiz, J., Goñi, P. & De Anta, M. T. Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 40, 491–493 (1996).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Heisig, P., Schedletzky, H. & Falkenstein-Paul, H. Mutations in the gyrA gene of a highly fluoroquinolone-resistant clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 37, 696–701 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Esperón, F. et al. Detection of plasmid-mediated colistin resistance (mcr-1) in E. coli isolated from pig caecum in Austria. Abstr. Int. J. Infect. Dis. 53, 4–163 (2016).

    Google Scholar 

  • 53.

    Matamoros, S. et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 7, 15364 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Zurfluh, K., Klumpp, J., Nüesch-Inderbinen, M. & Stephan, R. Full-length nucleotide sequences of mcr-1-harboring plasmids isolated from extended-spectrum-β-lactamase-producing Escherichia coli isolates of different origins. Antimicrob. Agents Chemother. 60, 5589–5591 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Snesrud, E. et al. A Model for transposition of the colistin resistance gene mcr-1 by ISApl1. Antimicrob. Agents Chemother. 60, 6973–6976 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Miles, A. A., Misra, S. S. & Irwin, J. O. The estimation of the bactericidal power of the blood. J. Hyg. (Lond) 38, 732–749 (1938).

    CAS  Google Scholar 

  • 57.

    Godambe, L. P., Bandekar, J. & Shashidhar, R. Species specific PCR based detection of Escherichia coli from Indian foods. 3 Biotech 7, 130 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Rebelo, A. R. et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Eurosurveillance 23, 17–00672 (2018).

    PubMed Central  Article  PubMed  Google Scholar 

  • 59.

    International Standards Organisation. Clinical laboratory testing and in vitro diagnostic test systems—Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility test devices. Part 1: reference method for testing the in vitro activity of antimi. ISO 20776-1 (2006).

  • 60.

    Mohapatra, B. R., Broersma, K. & Mazumder, A. Comparison of five rep-PCR genomic fingerprinting methods for differentiation of fecal Escherichia coli from humans, poultry and wild birds. FEMS Microbiol. Lett. 277, 98–106 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Heras, J. et al. GelJ—a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 16, 270 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    MathSciNet  MATH  Article  Google Scholar 

  • 63.

    Andrews S. No TitleFastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  • 64.

    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 44, W3–W10 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput. Biol. 13, e1005595 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 66.

    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 68.

    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 70.

    Hadfield, J. et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34, 292–293 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 71.

    Wang, R. et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1179 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Seemann T. snippy: Fast Bacterial Variant Calling from NGS Reads. https://github.com/tseemann/snippy (2015).

  • 73.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 74.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 75.

    Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Joensen, K. G. et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52, 1501–1510 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 77.

    Larsen, M. V. et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355–1361 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Carattoli, A. et al. In Silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 79.

    Joensen, K. G., Tetzschner, A. M. M., Iguchi, A., Aarestrup, F. M. & Scheutz, F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J. Clin. Microbiol. 53, 2410–2426 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 81.

    RcoreTeam. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.r-project.org/ (2016).

  • 82.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century