in

Fine-scale tracking of wild waterfowl and their impact on highly pathogenic avian influenza outbreaks in the Republic of Korea, 2014–2015

  • 1.

    Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M. & Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179 (1992).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Russell, C. J., Hu, M. & Okda, F. A. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol. 26(10), 841–853 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Elçi, C. The impact of HPAI of the H5N1 strain on economies of affected countries. In Human and Economic Resources Proceedings Book 101 (2006).

  • 4.

    Jhung, M. A. & Nelson, D. I. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds—United States, December 2014–January 2015 (2015).

  • 5.

    Su, S. et al. Epidemiology, evolution, and recent outbreaks of avian influenza virus in China. J. Virol. 89, 8671–8676 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Kim, H.-R. et al. Pathologic changes in wild birds infected with highly pathogenic avian influenza A (H5N8) viruses, South Korea, 2014. Emerg. Infect. Dis. 21, 775 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Feare, C. J. Role of wild birds in the spread of highly pathogenic avian influenza virus H5N1 and implications for global surveillance. Avian Dis. 54, 201–212 (2010).

    PubMed  Article  Google Scholar 

  • 8.

    Costa, T. P., Brown, J. D., Howerth, E. W. & Stallknecht, D. E. Variation in viral shedding patterns between different wild bird species infected experimentally with low-pathogenicity avian influenza viruses that originated from wild birds. Avian Pathol. 40, 119–124 (2011).

    PubMed  Article  Google Scholar 

  • 9.

    Bengtsson, D. et al. Does influenza A virus infection affect movement behaviour during stopover in its wild reservoir host?. R. Soc. Open Sci. 3, 150633 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 10.

    Son, K. et al. Experimental infection of highly pathogenic avian influenza viruses, clade 2.3. 4.4 H5N6 and H5N8, in mandarin ducks from South Korea. Transboundary Emerg. Dis. 65, 899–903 (2018).

    CAS  Article  Google Scholar 

  • 11.

    van Dijk, J. G. B., Fouchier, R. A. M., Klaassen, M. & Matson, K. D. Minor differences in body condition and immune status between avian influenza virus-infected and noninfected mallards: a sign of coevolution?. Ecol. Evol. 5, 436–449 (2015).

    PubMed  Article  Google Scholar 

  • 12.

    van Dijk, J. G. B. et al. Weak negative associations between avian influenza virus infection and movement behaviour in a key host species, the mallard Anas platyrhynchos. Oikos 124, 1293–1303 (2015).

    Article  Google Scholar 

  • 13.

    Lee, Y.-J. et al. Novel reassortant influenza A (H5N8) viruses, South Korea, 2014. Emerg. Infect. Dis. 20, 1087 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Lee, D.-H. et al. Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. J. Virol. 89, 6521–6524 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Verhagen, J. J. et al. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A (H5N8) virus in the Netherlands, 2014, within the context of global flyways. Eurosurveillance 20, 21–32 (2015).

    Article  Google Scholar 

  • 16.

    Shin, J.-H. et al. Prevalence of avian influenza virus in wild birds before and after the HPAI H5N8 outbreak in 2014 in South Korea. J. Microbiol. 53, 475–480 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 17.

    Jeong, J. et al. Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Vet. Microbiol. 173, 249–257 (2014).

    PubMed  Article  Google Scholar 

  • 18.

    Fourment, M., Darling, A. E. & Holmes, E. C. The impact of migratory flyways on the spread of avian influenza virus in North America. BMC Evol. Biol. 17, 118 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Kwon, Y. et al. An outbreak of highly pathogenic avian influenza subtype H5N1 in broiler breeders, Korea. J. Vet. Med. Sci. 67, 1193–1196 (2005).

    PubMed  Article  Google Scholar 

  • 20.

    Lee, Y.-J. et al. Highly pathogenic avian influenza virus (H5N1) in domestic poultry and relationship with migratory birds, South Korea. Emerg. Infect. Dis. 14, 487 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Lycett, S. J. et al. Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354, 213–217 (2016).

    Article  CAS  Google Scholar 

  • 22.

    Lee, D.-H. et al. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species. Avian Pathol. 45, 208–211 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Bouwstra, R. J. et al. Phylogenetic analysis of highly pathogenic avian influenza A (H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. Eurosurveillance 20, 21174 (2015).

    PubMed  Article  Google Scholar 

  • 24.

    Hanna, A. et al. Genetic characterization of highly pathogenic avian influenza (H5N8) virus from domestic ducks, England, November 2014. Emerg. Infect. Dis. 21, 879 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Kanehira, K. et al. Characterization of an H5N8 influenza A virus isolated from chickens during an outbreak of severe avian influenza in Japan in April 2014. Adv. Virol. 160, 1629–1643 (2015).

    CAS  Google Scholar 

  • 26.

    Pohlmann, A. et al. Outbreaks among wild birds and domestic poultry caused by reassorted influenza A (H5N8) clade 2.3. 4.4 viruses, Germany, 2016. Emerg. Infect. Dis. 23, 633 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Guinat, C. et al. Spatio-temporal patterns of highly pathogenic avian influenza virus subtype H5N8 spread, France, 2016 to 2017. Eurosurveillance 23, 1700791 (2018).

    PubMed Central  Article  PubMed  Google Scholar 

  • 28.

    Lee, D.-H. et al. Highly pathogenic avian influenza viruses and generation of novel reassortants, United States, 2014–2015. Emerg. Infect. Dis. 22, 1283 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Kwon, J.-H. et al. Highly pathogenic avian influenza A (H5N8) viruses reintroduced into South Korea by migratory waterfowl, 2014–2015. Emerg. Infect. Dis. 22, 507 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Kang, H.-M. et al. Novel reassortant influenza A (H5N8) viruses among inoculated domestic and wild ducks, South Korea, 2014. Emerg. Infect. Dis. 21, 298 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Hoye, B. J., Munster, V. J., Nishiura, H., Klaassen, M. & Fouchier, R. A. M. Surveillance of wild birds for avian influenza virus. Emerg. Infect. Dis. 16, 1827–1834 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 33.

    Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 34.

    Goldingay, R. & Kavanagh, R. Home-range estimates and habitat of the yellow-bellied glider (Petaurus australis) at Waratah Creek, New South Wales. Wildl. Res. 20, 387 (1993).

    Article  Google Scholar 

  • 35.

    Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in india using photographic captures and recaptures. Ecology 79, 2852–2862 (1998).

    Article  Google Scholar 

  • 36.

    Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363 (2007).

    PubMed  Article  Google Scholar 

  • 37.

    Fischer, J. W., Walter, W. D. & Avery, M. L. Brownian bridge movement models to characterize birds’ home ranges. Condor 115, 298–305 (2013).

    Article  Google Scholar 

  • 38.

    Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).

    PubMed  Article  Google Scholar 

  • 39.

    Takekawa, J. Y. et al. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks. Avian Dis. 54, 466–476 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Cappelle, J. et al. Risks of avian influenza transmission in areas of intensive free-ranging duck production with wild waterfowl. EcoHealth 11, 109–119 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Gaidet, N. et al. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry. J. Appl. Ecol. 47, 1147–1157 (2010).

    Article  Google Scholar 

  • 42.

    Gilbert, M. et al. Could Changes in the agricultural landscape of northeastern China have influenced the long-distance transmission of Highly pathogenic avian influenza H5nx Viruses?. Front. Vet. Sci. 4, 225 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Palm, E. C. et al. Mapping migratory flyways in Asia using dynamic Brownian bridge movement models. Movement Ecol. 3, 3 (2015).

    Article  Google Scholar 

  • 44.

    Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).

    PubMed  Article  Google Scholar 

  • 45.

    Helm, B. & Gwinner, E. Migratory restlessness in an equatorial nonmigratory bird. PLoS Biol. 4, e110 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Velkers, F. C., Blokhuis, S. J., Veldhuis Kroeze, E. J. B. & Burt, S. A. The role of rodents in avian influenza outbreaks in poultry farms: a review. Vet. Q. 37, 182–194 (2017).

    PubMed  Article  Google Scholar 

  • 47.

    Lee, K. et al. Highly pathogenic avian influenza A (H5N6) in domestic cats, South Korea. Emerg. Infect. Dis. 24, 2343 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Hill, S. C. et al. Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea. Infect. Genet. Evol. 34, 267–277 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Tiensin, T. et al. ecologic risk factor investigation of clusters of avian influenza A (H5N1) virus infection in Thailand. J. Infect. Dis. 199, 1735–1743 (2009).

    PubMed  Article  Google Scholar 

  • 50.

    Martin, V. et al. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China. PLoS Pathog. 7, e1001308 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Kwon, J.-H. et al. Domestic ducks play a major role in the maintenance and spread of H5N8 highly pathogenic avian influenza viruses in South Korea. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13406 (2019).

    Article  PubMed  Google Scholar 

  • 52.

    Kim, W. et al. Risk factors associated with highly pathogenic avian influenza subtype H5N8 outbreaks on broiler duck farms in South Korea. Transbound. Emerg. Dis. 65, 1329–1338 (2018).

    PubMed  Article  Google Scholar 

  • 53.

    Hicks, J. T. et al. Agricultural and geographic factors shaped the North American 2015 highly pathogenic avian influenza H5N2 outbreak. PLoS Pathog. 16, e1007857 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 54.

    Lu, L., Leigh Brown, A. J. & Lycett, S. J. Quantifying predictors for the spatial diffusion of avian influenza virus in China. BMC Evol. Biol. 17, 16 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 55.

    Brown, J. D., Stallknecht, D. E., Beck, J. R., Suarez, D. L. & Swayne, D. E. Susceptibility of North American ducks and gulls to H5N1 highly pathogenic avian influenza viruses. Emerg. Infect. Dis. 12, 1663–1670 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 56.

    Newman, S. H. et al. Eco-virological approach for assessing the role of wild birds in the spread of avian influenza H5N1 along the Central Asian Flyway. PLoS ONE 7, e30636 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Wikelski, M. & Kays, R. Movebank: Archive, Analysis and Sharing of Animal Movement Data. World Wide Web electronic publication (2014).

  • 58.

    La Sorte, F. A., Fink, D., Hochachka, W. M. & Kelling, S. Convergence of broad-scale migration strategies in terrestrial birds. Proc. R. Soc. B Biol. Sci. 283, 20152588 (2016).

    Article  CAS  Google Scholar 

  • 59.

    Németh, B. et al. Comparison of weighting methods used in multicriteria decision analysis frameworks in healthcare with focus on low-and middle-income countries. J. Comp. Effect. Res. 8, 195–204 (2019).

    Article  Google Scholar 

  • 60.

    Belkhiria, J., Alkhamis, M. A. & Martínez-López, B. Application of Species Distribution Modeling for Avian Influenza surveillance in the United States considering the North America Migratory Flyways. Sci. Rep. 6, 33161 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Belkhiria, J., Hijmans, R. J., Boyce, W., Crossley, B. M. & Martínez-López, B. Identification of high risk areas for avian influenza outbreaks in California using disease distribution models. PLoS ONE 13, e0190824 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Stevens, K. B., Gilbert, M. & Pfeiffer, D. U. Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: a spatial multicriteria decision analysis approach. Spat. Spatio-temporal Epidemiol. 4, 1–14 (2013).

    Article  Google Scholar 

  • 63.

    Martin, V. et al. Risk-based surveillance for avian influenza control along poultry market chains in South China: the value of social network analysis. Prev. Vet. Med. 102, 196–205 (2011).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Fournié, G. et al. Interventions for avian influenza A (H5N1) risk management in live bird market networks. PNAS 110, 9177–9182 (2013).

    ADS  PubMed  Article  Google Scholar 

  • 65.

    Poolkhet, C., Chairatanayuth, P., Thongratsakul, S., Kasemsuwan, S. & Rukkwamsuk, T. Social network analysis used to assess the relationship between the spread of avian influenza and movement patterns of backyard chickens in Ratchaburi, Thailand. Res. Vet. Sci. 95, 82–86 (2013).

    PubMed  Article  Google Scholar 

  • 66.

    Wiratsudakul, A. et al. Modeling the dynamics of backyard chicken flows in traditional trade networks in Thailand: implications for surveillance and control of avian influenza. Trop. Anim. Health Prod. 46, 845–853 (2014).

    PubMed  Article  Google Scholar 

  • 67.

    Lee, K. et al. Unraveling the contact patterns and network structure of pig shipments in the United States and its association with porcine reproductive and respiratory syndrome virus (PRRSV) outbreaks. Prev. Vet. Med. 138, 113–123 (2017).

    PubMed  Article  Google Scholar 

  • 68.

    Amirpour Haredasht, S. et al. Modeling the spatio-temporal dynamics of porcine reproductive and respiratory syndrome cases at farm level using geographical distance and pig trade network matrices. BMC Vet. Res. 13, 163 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Kim, Y. et al. Livestock trade network: potential for disease transmission and implications for risk-based surveillance on the island of Mayotte. Sci. Rep. 8, 11550 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 70.

    McCue, M. E. & McCoy, A. M. The scope of big data in one medicine: unprecedented opportunities and challenges. Front. Vet. Sci. 4, 194 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Boyce, W. M., Sandrock, C., Kreuder-Johnson, C., Kelly, T. & Cardona, C. Avian influenza viruses in wild birds: a moving target. Comp. Immunol. Microbiol. Infect. Dis. 32, 275–286 (2009).

    PubMed  Article  Google Scholar 

  • 72.

    Gardy, J. L. & Loman, N. J. Towards a genomics-informed, real-time, global pathogen surveillance system. Nat. Rev. Genet. 19, 9 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 73.

    Hill, N. J. & Runstadler, J. A. A bird’s eye view of influenza a virus transmission: challenges with characterizing both sides of a co-evolutionary dynamic. Integr. Comp. Biol. 56, 304–316 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 74.

    Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 75.

    Rejmanek, D., Hosseini, P. R., Mazet, J. A. K., Daszak, P. & Goldstein, T. Evolutionary dynamics and global diversity of influenza A virus. J. Virol. 89, 10993–11001 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Jenni, L. & Kéry, M. Timing of autumn bird migration under climate change: advances in long–distance migrants, delays in short–distance migrants. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 1467–1471 (2003).

    Article  Google Scholar 

  • 77.

    Lee, D.-H. et al. Surveillance and Isolation of HPAI H5N1 from Wild Mandarin Ducks (Aix galericulata). J. Wildl. Dis. 47, 994–998 (2011).

    PubMed  Article  Google Scholar 

  • 78.

    Kim, H.-R. et al. Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea. Emerg. Infect. Dis. 18, 480–483 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Kwon, Y. K., Thomas, C. & Swayne, D. E. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl. Vet. Pathol. 47, 495–506 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 80.

    Kranstauber, B., Smolla, M. & Kranstauber, M. B. Move: visualizing and analyzing animal track data. https://CRAN.R-project.org/package=move (2019).

  • 81.

    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).

  • 82.

    RStudio Team. RStudio: integrated development for R. RStudio, Inc., Boston, MA https://www.rstudio.com (2019).


  • Source: Ecology - nature.com

    Dietary diversity and evolution of the earliest flying vertebrates revealed by dental microwear texture analysis

    Saudi Arabia faces increased heat, humidity, precipitation extremes by mid-century