in

Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot

  • 1.

    Hewitt, G. M. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58, 247–276. https://doi.org/10.1006/bijl.1996.0035 (1996).

    Article  Google Scholar 

  • 2.

    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. Trans. R. Soc. B Biol. Sci. 359, 183–195. https://doi.org/10.1098/rstb.2003.1388 (2004).

    CAS  Article  Google Scholar 

  • 3.

    Patton, H. et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 169, 148–172. https://doi.org/10.1016/j.quascirev.2017.05.019 (2017).

    ADS  Article  Google Scholar 

  • 4.

    Hewitt, G. M. Postglacial re-colonisation of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).

    Article  Google Scholar 

  • 5.

    Sworobowicz, L. et al. Revisiting the phylogeography of Asellus aquaticus in Europe: insights into cryptic diversity and spatiotemporal diversification. Freshw. Biol. 60, 1824–1840. https://doi.org/10.1111/fwb.12613 (2015).

    Article  Google Scholar 

  • 6.

    Schmitt, T. & Varga, Z. Extra-Mediterranean refugia: the rule and not the exception?. Front. Zool. 9, 1–12. https://doi.org/10.1186/1742-9994-9-22 (2012).

    Article  Google Scholar 

  • 7.

    Verovnik, R., Sket, B. & Trontelj, P. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Mol. Ecol. 14, 4355–4369. https://doi.org/10.1111/j.1365-294X.2005.02745.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 8.

    Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: the role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshw. Biol. https://doi.org/10.1111/fwb.13487 (2020).

    Article  Google Scholar 

  • 9.

    Neumann, K. et al. Genetic spatial structure of European common hamsters (Cricetus cricetus)—a result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 14, 1473–1483. https://doi.org/10.1111/j.1365-294X.2005.02519.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Fussi, B., Lexer, C. & Heinze, B. Phylogeography of Populus alba (L.) and Populus tremula (L.) in Central Europe: secondary contact and hybridisation during recolonisation from disconnected refugia. Tree Genet. Genomes 6, 439–450. https://doi.org/10.1007/s11295-009-0262-5 (2010).

    Article  Google Scholar 

  • 11.

    Grabowski, M., Mamos, T., Bącela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread Balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Hou, Z., Sket, B., Fiser, C. & Li, S. Eocene habitat shift from saline to freshwater promoted Tethyan amphipod diversification. Proc. Natl. Acad. Sci. 108, 14533–14538. https://doi.org/10.1073/pnas.1104636108 (2011).

    ADS  Article  PubMed  Google Scholar 

  • 13.

    Mamos, T., Wattier, R., Burzyński, A. & Grabowski, M. The legacy of a vanished sea: a high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).

    Article  PubMed  Google Scholar 

  • 14.

    Perea, S. et al. Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evol. Biol. 10, 1–27. https://doi.org/10.1186/1471-2148-10-265 (2010).

    CAS  Article  Google Scholar 

  • 15.

    Saito, T. et al. Phylogeography of freshwater planorbid snails reveals diversification patterns in Eurasian continental islands. BMC Evol. Biol. https://doi.org/10.1186/s12862-018-1273-3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Utevsky, S. & Trontelj, P. Phylogeography of the southern medicinal leech, Hirudo verbana: a response to Živić et al. (2015). Aquat. Ecol. 50, 97–100. https://doi.org/10.1007/s10452-015-9553-0 (2016).

    CAS  Article  Google Scholar 

  • 17.

    Grabowski, M., Jażdżewski, K. & Konopacka, A. Alien crustacea in polish waters—Amphipoda. Aquat. Invas. 2, 25–38. https://doi.org/10.3391/ai.2007.2.1.3 (2007).

    Article  Google Scholar 

  • 18.

    Kontula, T. & Väinölä, R. Postglacial colonization of Northern Europe by distinct phylogeographic lineages of the bullhead, Cottus gobio. Mol. Ecol. 10, 1983–2002. https://doi.org/10.1046/j.1365-294X.2001.01328.x (2001).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Mateus, C. S., Almeida, P. R., Mesquita, N., Quintella, B. R. & Alves, M. J. European lampreys: new insights on postglacial colonization, gene flow and speciation. PLoS ONE 11, 1–22. https://doi.org/10.1371/journal.pone.0148107 (2016).

    CAS  Article  Google Scholar 

  • 20.

    Jażdżewski, K. Range extensions of some gammaridean species in European inland waters caused by human activity. 10–16 (1980).

  • 21.

    Bij de Vaate, A., Jażdżewski, K., Ketelaars, H. A. M., Gollasch, S. & Van der Velde, G. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Can. J. Fish. Aquat. Sci. 59, 1159–1174. https://doi.org/10.1139/f02-098 (2002).

    Article  Google Scholar 

  • 22.

    Panov, V. E. et al. Assessing the risks of aquatic species invasions via European inland waterways: from concepts to environmental indicators. Integr. Environ. Assess. Manag. 5, 110–126. https://doi.org/10.1897/IEAM_2008-034.1 (2009).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Väinölä, R. et al. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595, 241–255. https://doi.org/10.1007/s10750-007-9020-6 (2008).

    Article  Google Scholar 

  • 24.

    Weiss, M. & Leese, F. Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol. Biol. 16, 153. https://doi.org/10.1186/s12862-016-0723-z (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Weigand, A. M., Michler-Kozma, D., Kuemmerlen, M. & Jourdan, J. Substantial differences in genetic diversity and spatial structuring among (cryptic) amphipod species in a mountainous river basin. Freshw. Biol. 65, 1641–1656. https://doi.org/10.1111/fwb.13529 (2020).

    CAS  Article  Google Scholar 

  • 26.

    Rachalewski, M., Banha, F., Grabowski, M. & Anastácio, P. M. Ectozoochory as a possible vector enhancing the spread of an alien amphipod Crangonyx pseudogracilis. Hydrobiologia 717, 109–117. https://doi.org/10.1007/s10750-013-1577-7 (2013).

    Article  Google Scholar 

  • 27.

    Peck, S. B. Amphipod dispersal in the fur of aquatic mammals. Can. F. Nat. 89, 181–182 (1975).

    Google Scholar 

  • 28.

    Sainte-Marie, B. A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223, 189–227. https://doi.org/10.1007/BF00047641 (1991).

    Article  Google Scholar 

  • 29.

    Rewicz, T., Grabowski, M., MacNeil, C. & Bącela-Spychalska, K. The profile of a ‘perfect’ invader—the case of killer shrimp, Dikerogammarus villosus. Aquat. Invas. 9, 267–288. https://doi.org/10.3391/ai.2014.9.3.04 (2014).

    Article  Google Scholar 

  • 30.

    Vader, W. & Tandberg, A. H. S. Gammarid amphipods (Crustacea) in Norway, with a key to the species. Fauna Nor. 39, 12–25. https://doi.org/10.5324/fn.v39i0.2873 (2019).

    Article  Google Scholar 

  • 31.

    Macdonald, K. S., Yampolsky, L. & Duffy, J. E. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol. 35, 323–343. https://doi.org/10.1016/j.ympev.2005.01.013 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Grabowski, M., Wysocka, A. & Mamos, T. Molecular species delimitation methods provide new insight into taxonomy of the endemic gammarid species flock from the ancient Lake Ohrid. Zool. J. Linn. Soc. 181, 272–285. https://doi.org/10.1093/zoolinnean/zlw025 (2017).

    Article  Google Scholar 

  • 33.

    Jabłońska, A., Wrzesińska, W., Zawal, A., Pešić, V. & Grabowski, M. Long-term within-basin isolation patterns, different conservation units, and interspecific mitochondrial DNA introgression in an amphipod endemic to the ancient Lake Skadar system, Balkan Peninsula. Freshw. Biol. 65, 209–225. https://doi.org/10.1111/fwb.13414 (2020).

    CAS  Article  Google Scholar 

  • 34.

    Copilaş-Ciocianu, D. & Petrusek, A. The southwestern Carpathians as an ancient centre of diversity of freshwater gammarid amphipods: insights from the Gammarus fossarum species complex. Mol. Ecol. 24, 3980–3992. https://doi.org/10.1111/mec.13286 (2015).

    Article  PubMed  Google Scholar 

  • 35.

    Copilaş-Ciocianu, D. & Petrusek, A. Phylogeography of a freshwater crustacean species complex reflects a long-gone archipelago. J. Biogeogr. 44, 421–432. https://doi.org/10.1111/jbi.12853 (2017).

    Article  Google Scholar 

  • 36.

    Leuven, R. S. E. W. et al. The river Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invas. 11, 1989–2008. https://doi.org/10.1007/s10530-009-9491-7 (2009).

    Article  Google Scholar 

  • 37.

    Kelly, D. W., Muirhead, J. R., Heath, D. D. & Macisaac, H. J. Contrasting patterns in genetic diversity following multiple invasions of fresh and brackish waters. Mol. Ecol. 15, 3641–3653. https://doi.org/10.1111/j.1365-294X.2006.03012.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Panov, V. & Berezina, N. Invasive aquatic species of Europe. Distribution, impacts and management. Invas. Aquat. Species Eur. Distrib. Impacts Manag. https://doi.org/10.1007/978-94-015-9956-6 (2002).

    Article  Google Scholar 

  • 39.

    Csabai, Z. et al. Mass appearance of the Ponto-Caspian invader Pontogammarus robustoides in the River Tisza catchment: bypass in the southern invasion corridor?. Knowl. Manag. Aquat. Ecosyst. https://doi.org/10.1051/kmae/2020003 (2020).

    Article  Google Scholar 

  • 40.

    Rewicz, T., Wattier, R., Grabowski, M., Rigaud, T. & Bącela-Spychalska, K. Out of the Black sea: phylogeography of the invasive killer shrimp Dikerogammarus villosus across Europe. PLoS ONE 10, 1–20. https://doi.org/10.1371/journal.pone.0118121 (2015).

    CAS  Article  Google Scholar 

  • 41.

    Rewicz, T. et al. The killer shrimp, Dikerogammarus villosus, invading European Alpine Lakes: a single main source but independent founder events with an overall loss of genetic diversity. Freshw. Biol. 62, 1036–1051. https://doi.org/10.1111/fwb.12923 (2017).

    CAS  Article  Google Scholar 

  • 42.

    Jażdżewska, A. M. et al. Cryptic diversity and mtDNA phylogeography of the invasive demon shrimp, Dikerogammarus haemobaphes (Eichwald, 1841), in Europe. NeoBiota 57, 53–86. https://doi.org/10.3897/neobiota.57.46699 (2020).

    Article  Google Scholar 

  • 43.

    Jażdżewski, K. & Roux, A. L. Biogéographie de Gammarus roeseli Gervais en Europe, en particulier répartition en France et en Pologne (1988).

  • 44.

    Piscart, C. & Bollache, L. Crustacés amphipodes de surface : gammares d’eau douce.. Association Française de Limnologie, Introduction pratique à la systématique des organismes des eaux continentales de France (2012).

  • 45.

    Paganelli, D., Gazzola, A., Marchini, A. & Sconfietti, R. The increasing distribution of Gammarus roeselii Gervais, 1835: first record of the non-indigenous freshwater amphipod in the sub-lacustrine Ticino River basin (Lombardy, Italy). Bioinvas. Rec. 4, 37–41. https://doi.org/10.3391/bir.2015.4.1.06 (2015).

    Article  Google Scholar 

  • 46.

    Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda) Part II. Gammarus roeseli-group and related species. Bijdragen tot de dierkunde 57, 207–260. https://doi.org/10.1163/26660644-05702005 (1977).

    Article  Google Scholar 

  • 47.

    Moret, Y., Bollache, L., Wattier, R. & Rigaud, T. Is the host or the parasite the most locally adapted in an amphipod-acanthocephalan relationship? A case study in a biological invasion context. Int. J. Parasitol. 37, 637–644. https://doi.org/10.1016/j.ijpara.2006.12.006 (2007).

    Article  PubMed  Google Scholar 

  • 48.

    Copilaş-Ciocianu, D., Borza, P. & Petrusek, A. Extensive variation in the morphological anti-predator defense mechanism of Gammarus roeselii Gervais, 1835 (Crustacea:Amphipoda). Freshw. Sci. 39, 47–55. https://doi.org/10.1086/707259 (2020).

    Article  Google Scholar 

  • 49.

    Miller, B. J., von der Heyden, S. & Gibbons, M. J. Significant population genetic structuring of the holoplanktic scyphozoan Pelagia noctiluca in the Atlantic Ocean. Afr. J. Mar. Sci. 34, 425–430. https://doi.org/10.2989/1814232X.2012.726646 (2012).

    Article  Google Scholar 

  • 50.

    Brown, W. M., George, M. Jr. & Wilson, A. C. Rapid evolution of animal mitochondrial DNA. Genetics 76, 1967–1971. https://doi.org/10.1002/(sici)1097-4555(199706)28:6%3c433::aid-jrs125%3e3.3.co;2-5 (1979).

    CAS  Article  Google Scholar 

  • 51.

    Kázmér, M. Birth, life and death of the Pannonian Lake. Palaeogeogr. Palaeoclimatol. Palaeoecol. 79, 171–188. https://doi.org/10.1016/0031-0182(90)90111-J (1990).

    Article  Google Scholar 

  • 52.

    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112. https://doi.org/10.1006/bijl.1999.0332 (1999).

    Article  Google Scholar 

  • 53.

    Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).

    Article  Google Scholar 

  • 54.

    Copilaş-Ciocianu, D., Fišer, C., Borza, P. & Petrusek, A. Is subterranean lifestyle reversible? Independent and recent large-scale dispersal into surface waters by two species of the groundwater amphipod genus Niphargus. Mol. Phylogenet. Evol. 119, 37–49. https://doi.org/10.1016/j.ympev.2017.10.023 (2018).

    Article  PubMed  Google Scholar 

  • 55.

    Antal, L. et al. Phylogenetic evidence for a new species of Barbus in the Danube River basin. Mol. Phylogenet. Evol. 96, 187–194. https://doi.org/10.1016/j.ympev.2015.11.023 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 56.

    Walker, M. J. C. Climatic changes in Europe during the last glacial/interglacial transition. Quat. Int. 28, 63–76. https://doi.org/10.1016/1040-6182(95)00030-M (1995).

    Article  Google Scholar 

  • 57.

    Pawłowski, D. et al. The response of flood-plain ecosystems to the Late Glacial and Early Holocene hydrological changes: a case study from a small Central European river valley. CATENA 147, 411–428. https://doi.org/10.1016/j.catena.2016.07.034 (2016).

    CAS  Article  Google Scholar 

  • 58.

    Notebaert, B. & Verstraeten, G. Sensitivity of West and Central European river systems to environmental changes during the Holocene: a review. Earth Sci. Rev. 103, 163–182. https://doi.org/10.1016/j.earscirev.2010.09.009 (2010).

    ADS  Article  Google Scholar 

  • 59.

    Gibling, M. R. River systems and the anthropocene: a late pleistocene and holocene timeline for human influence. Quaternary 1, 21. https://doi.org/10.3390/quat1030021 (2018).

    Article  Google Scholar 

  • 60.

    Gherardi, F. Biological invaders in inland waters: profiles, distribution, and threats. https://doi.org/10.1007/978-1-4020-6029-8 (2007).

  • 61.

    Jazdzewski, K., Konopacka, A. & Grabowski, M. Recent drastic changes in the gammarid fauna (Crustacea, Amphipoda) of the Vistula River deltaic system in Poland caused by alien invaders. Divers. Distrib. 10, 81–87. https://doi.org/10.1111/j.1366-9516.2004.00062.x (2004).

    Article  Google Scholar 

  • 62.

    Jourdan, J., Piro, K., Weigand, A. & Plath, M. Small-scale phenotypic differentiation along complex stream gradients in a non-native amphipod. Front. Zool. 16, 29. https://doi.org/10.1186/s12983-019-0327-8 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 63.

    Mauchart, P., Bereczki, C., Ortmann-Ajkai, A., Csabai, Z. & Szivák, I. Niche segregation between two closely related Gammarids (Crustacea, Amphipoda)—native vs. naturalised non-native species. Crustaceana 87, 1296–1314. https://doi.org/10.1163/15685403-00003355 (2014).

    Article  Google Scholar 

  • 64.

    Lagrue, C. et al. Interspecific differences in drift behaviour between the native Gammarus pulex and the exotic Gammarus roeseli and possible implications for the invader’s success. Biol. Invas. 13, 1409–1421. https://doi.org/10.1007/s10530-010-9899-0 (2011).

    Article  Google Scholar 

  • 65.

    Pöckl, M. & Humpesch, U. H. Intra- and inter-specific variations in egg survival and brood development time for Austrian populations of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda). Freshw. Biol. 23, 441–455. https://doi.org/10.1111/j.1365-2427.1990.tb00286.x (1990).

    Article  Google Scholar 

  • 66.

    Pöckl, M. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. https://doi.org/10.1111/j.1365-2427.1992.tb00534.x (1992).

  • 67.

    Pöckl, M. Reproductive potential and lifetime potential fecundity of the freshwater amphipods Gammarus fossarum and G. roeseli in Austrian streams and rivers. Freshw. Biol. 30, 73–91. https://doi.org/10.1111/j.1365-2427.1993.tb00790.x (1993).

    Article  Google Scholar 

  • 68.

    Pöckl, M., Webb, B. W. & Sutcliffe, D. W. Life history and reproductive capacity of Gammarus fossarum and G. roeseli (Crustacea: Amphipoda) under naturally fluctuating water temperatures: a simulation study. Freshw. Biol. 48, 53–66. https://doi.org/10.1046/j.1365-2427.2003.00967.x (2003).

    Article  Google Scholar 

  • 69.

    Aguilera-Muñoz, F., Lafarga-Cruz, F. & Gallardo-Escárate, C. Molecular analysis in Chilean commercial gastropods based on 16S rRNA, COI and ITS1-5.8S rDNA-ITS2 sequences. Gayana (Concepción) 73, 17–27. https://doi.org/10.4067/s0717-65382009000100003 (2009).

    Article  Google Scholar 

  • 70.

    Alvarez, J. M. & Hoy, M. A. Evaluation of the ribosomal ITS2 DNA sequences in separating closely related populations of the Parasitoid Ageniaspis (Hymenoptera: Encyrtidae) article. Ann. Entomol. Soc. Am. https://doi.org/10.1603/0013-8746(2002)095 (2002).

    Article  Google Scholar 

  • 71.

    Wesson, D. M., McLain, D. K., Oliver, J. H., Piesman, J. & Collins, F. H. Investigation of the validity of species status of Ixodes dammini (Acari: Ixodidae) using rDNA. Proc. Natl. Acad. Sci. U. S. A. 90, 10221–10225. https://doi.org/10.1073/pnas.90.21.10221 (1993).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Tang, J., Toè, L., Back, C. & Unnasch, T. R. Intra-specific heterogeneity of the rDNA internal transcribed spacer in the Simulium damnosum (Diptera: Simuliidae) complex. Mol. Biol. Evol. 13, 244–252. https://doi.org/10.1093/oxfordjournals.molbev.a025561 (1996).

    CAS  Article  PubMed  Google Scholar 

  • 73.

    Palandačić, A., Bravničar, J., Zupančić, P., Šanda, R. & Snoj, A. Molecular data suggest a multispecies complex of Phoxinus (Cyprinidae) in the Western Balkan Peninsula. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2015.05.024 (2015).

    Article  PubMed  Google Scholar 

  • 74.

    Vucić, M., Jelić, D., Žutinić, P., Grandjean, F. & Jelić, M. Distribution of Eurasian minnows (Phoxinus : Cypriniformes) in the Western Balkans. Knowl. Manag. Aquat. Ecosyst. 419, 11. https://doi.org/10.1051/kmae/2017051 (2018).

    Article  Google Scholar 

  • 75.

    Buj, I. et al. Peculiar occurrence of Cobitis bilineata Canestrini, 1865 and Sabanejewia larvata (De Filippi, 1859) (Cobitidae, Actinopteri) in the Danube River basin in Croatia. Fundam. Appl. Limnol. https://doi.org/10.1127/fal/2020/1272 (2020).

    Article  Google Scholar 

  • 76.

    Manning, J. T. Male discrimination and investment in Asellus aquaticus (L.) and A. meridianus Racovitsza (Crustacea: Isopoda). Behaviour 55(1–2), 1–14 (1975).

    CAS  Article  Google Scholar 

  • 77.

    Bollache, L. & Cézilly, F. Sexual selection on male body size and assortative pairing in Gammarus pulex (Crustacea: Amphipoda): field surveys and laboratory experiments. J. Zool. 264, 135–141. https://doi.org/10.1017/S0952836904005643 (2004).

    Article  Google Scholar 

  • 78.

    Cornet, S., Luquet, G. & Bollache, L. Influence of female moulting status on pairing decisions and size-assortative mating in amphipods. J. Zool. 286, 312–319. https://doi.org/10.1111/j.1469-7998.2011.00882.x (2012).

    Article  Google Scholar 

  • 79.

    Grabner, D. S. et al. Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasites Vectors https://doi.org/10.1186/s13071-015-1036-6 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 80.

    Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda) Part I. Gammarus pulex—group and related species (1977).

  • 81.

    Karaman, G. S. & Pinkster, S. Freshwater gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea-Amphipoda). Part III. Gammarus balcanicus—group and related species (1987).

  • 82.

    Hillis, D. M. & Moritz, C. Molecular Systematics (Sinauer Associates Inc., Sunderland, 1996).

    Google Scholar 

  • 83.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).

    CAS  Article  PubMed  Google Scholar 

  • 84.

    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 85.

    Sequencher version 5.4.6 DNA sequence analysis software, Gene Codes Corporation, Ann Arbor, MI USA https://www.genecodes.com.

  • 86.

    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 87.

    Ratnasingham, S. & Hebert, P. D. N. The barcode of life data system. Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2006.01678.x (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 88.

    Bouckaert, R. et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–6. https://doi.org/10.1371/journal.pcbi.1003537 (2014).

    CAS  Article  Google Scholar 

  • 89.

    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 1–11. https://doi.org/10.1186/s12862-017-0890-6 (2017).

    Article  Google Scholar 

  • 90.

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1.6. Available at https://beast.bio.ed.ac.uk/Tracer (2014).

  • 91.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 92.

    Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).

    Article  Google Scholar 

  • 93.

    Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. (1989).

  • 94.

    Fu, Y. X. New statistical tests of neutrality for DNA samples from a population. Genetics 143, 557–570 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 95.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article  PubMed  Google Scholar 

  • 96.

    Copilaş-Ciocianu, D., Grabowski, M., Parvulescu, L. & Petrusek, A. Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability. Zootaxa 3893, 243. https://doi.org/10.11646/zootaxa.3893.2.5 (2014).

    Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    The impact of rising sea temperatures on an Arctic top predator, the narwhal

    Water strider females use individual experience to adjust jumping behaviour to their weight within physical constraints of water surface tension