Vilaseca, M., Gutiérrez, M. C., López-Grimau, V., López-Mesas, M. & Crespi, M. Biological treatment of a textile effluent after electrochemical oxidation of reactive dyes. Water Environ. Res. 82, 176–182 (2010).
Mahmood, Q., Mahnoor, A., Shahida, S., Tahir, M. & Ali, S. Cadmium contamination in water and soil. In Cadmium Toxic (eds Hasanuzzaman, M. et al.) 141–161 (Elsevier, Amsterdam, Toler. Plants, 2018).
Wasi, S., Tabrez, S. & Ahmad, M. Toxicological effects of major environmental pollutants: an overview. Environ. Monit. Assess. 185, 2585–2593 (2013).
Malik, A. Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ. Int. 33, 122–138 (2007).
Asere, T. G., Stevens, C. V. & Du Laing, G. Use of (modified) natural adsorbents for arsenic remediation: a review. Sci. Total Environ. 676, 706–720 (2019).
Shakoor, M. B. et al. Remediation of arsenic contaminated water using agricultural wastes as biosorbents. Crit. Rev. Environ. Sci. Technol. 46, 467–499 (2016).
Bilal, M., et al. Waste biomass adsorbents for copper removal from industrial wastewater—a review. J. Hazard. Mater. 263Pt 2, 322–333 (2013).
Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J. & Ismadji, S. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem. Eng. J. 44, 19–41 (2009).
Ofomaja, A. E. & Ho, Y. S. Effect of pH on cadmium biosorption by coconut copra meal. J. Hazard. Mater. 139, 356–362 (2007).
Saied, S., Gebauer, J., Hammer, K. & Buerkert, A. Ziziphus spina-christi (L.) willd: a multipurpose fruit tree. Genet. Resour. Crop Evol. 55, 929–937 (2008).
Omri, A. & Benzina, M. Characterization of activated carbon prepared from a new raw lignocellulosic material: Ziziphus Spina-Christi seeds. J. Soc. Chim. Tunisie 14, 175–183 (2012).
Nazif, N.M. Phytoconstituents of Zizyphus spina-christi L. fruits and their antimicrobial activity. Food Chem. 76, 77–81 (2002).
Amoo, I. A. & Atasie, V. N. Nutritional and functional properties of Tamarindus Indica Pulp and Zizyphus spina-christi fruit and seed. J. Food Agric. Environ. 10, 16–19 (2012).
Osman, M. A. & Ahmed, M. A. Chemical and proximate composition of (Zizyphus spina-christi) Nabag Fruit. Nutr. Food Sci. 39, 70–75 (2009).
Ngah, W. S. W. & Hanafiah, M. A. K. M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935–3948 (2008).
Gautam, R.K., Chattopadhyaya, M.C. & Sharma, S.K. Biosorption of heavy metals: recent trends and challenges Ravindra. In Wastewater Reuse and Management; (Sharma, S.K., Sanghi, R., Eds).; Springer: Berlin, 305–322 (2013).
Park, D., Yun, Y.-S. & Park, J. M. The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng. 15, 86–102 (2010).
Won, S. W., Kotte, P., Wei, W., Lim, A. & Yun, Y.-S. Biosorbents for recovery of precious metals. Bioresour. Technol. 160, 203–212 (2014).
Patel, S. Potential of fruit and vegetable wastes as novel biosorbents: summarizing the recent studies. Rev. Environ. Sci. Bio/Technol. 11, 365–380 (2012).
Volesky, B. Biosorption and me. Water Res. 41, 4017–4029 (2007).
Vijayaraghavan, K. & Yun, Y. S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 26, 266–291 (2008).
Acar, F. N. & Eren, Z. Removal of Cu(II) ions by activated poplar sawdust (Samsun Clone) from aqueous solutions. J. Hazard. Mater. 137, 909–914 (2006).
Reddy, B. R., Mirghaffari, N. & Gaballah, I. Removal and recycling of copper from aqueous solutions using treated Indian barks. Resour. Conserv. Recycl. 21, 227–245 (1997).
Su, P., Zhang, J., Tang, J. & Zhang, C. Preparation of nitric acid modified powder activated carbon to remove trace amount of Ni(II) in aqueous solution. Water Sci. Technol. 80, 86–97 (2019).
Sciban, M., Klasnja, M. & Skrbic, B. Modified softwood sawdust as adsorbent of heavy metal ions from water. J. Hazard. Mater. 136, 266–271 (2006).
Taty-Costodes, V. C., Fauduet, H., Porte, C. & Delacroix, A. Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J. Hazard. Mater. 105, 121–142 (2003).
Gupta, V. K., Jain, C. K., Ali, I., Sharma, M. & Saini, V. K. Removal of cadmium and nickel from wastewater using bagasse fly ash—a sugar industry waste. Water Res. 37, 4038–4044 (2003).
Polatoğlu, I. & Karataş, D. Modeling of molecular interaction between catechol and tyrosinase by DFT. J. Mol. Struct. 1202, 127192 (2020).
Omar, A., Ezzat, H., Elhaes, H. & Ibrahim, M. A. Molecular modeling analyses for modified biopolymers. Biointerface Res. Appl. Chem. 11(1), 7847–7859 (2021).
Badry, R. et al. Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. J. Mol. Struct. 1224, 129013 (2021).
Menazea, A. A. et al. Chitosan/graphene oxide composite as an effective removal of Ni, Cu, As, Cd and Pb from wastewater. Comput. Theor. Chem. 1189, 112980 (2020).
Al-Bagawi, A. H., Bayoumy, A. M. & Ibrahim, M. A. Molecular modeling analyses for graphene functionalized with Fe3O4 and NiO. Heliyon 6(7), e04456 (2020).
Assirey, E. A., Sirry, S. M., Burkani, H. A. & Ibrahim, M. Biosorption of zinc(II) and cadmium(II) using Ziziphus spina stones. J. Comput. Theor. Nanosci. 15, 3102–3108 (2018).
Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. Standard Methods for the Examination of Water and Wastewater 23rd edn. (American Public Health Association (APHA), Washington, DC, 2017).
Zhang, B. et al. Biosorption characteristics of Bacillus gibsonii S-2 waste biomass for removal of lead (II) from aqueous solution. Environ. Sci. Pollut. Res. Int. 20, 1367–1373 (2013).
Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918).
Frisch, M. et al. Gaussian 09, revision C.01 (Gaussian, Inc., Wallingford, 2009).
Becke, A. D. Density-functional thermochemistry—III: the role of exact exchange. Chem. Phys. 98, 5648 (1993).
Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).
Miehlich, B., Savin, A., Stoll, H. & Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989).
Jin, Y., Zhang, Y., Lü, Q. & Cheng, X. Biosorption of methylene blue by chemically modified cellulose waste. J. Wuhan Univ. Technol. Sci. Ed. 29, 817–823 (2014).
Calero, M., Pérez, A., Blázquez, G., Ronda, A. & Martín-Lara, M. A. Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead. Ecol. Eng. 58, 344–354 (2013).
Abdolali, A. et al. Characterization of a multi-metal binding biosorbent: chemical modification and desorption studies. Bioresour. Technol. 193, 477–487 (2015).
Brigida, A. I. S., Calado, V. M. A., Goncalves, L. R. B. & Coelho, M. A. Z. Effect of chemical treatments on properties of green coconut fiber. Carbohydr. Polym. 79, 832–838 (2010).
Herrera-Franco, P. J. & Valadez-Gonzalez, A. A. Study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 36, 597–608 (2005).
Mao, J., Won, S. W., Choi, S. B., Lee, M. W. & Yun, Y. S. Surface modification of the Corynebacterium Glutamicum biomass to increase carboxyl binding site for basic dye molecules. Biochem. Eng. J. 46, 1–6 (2009).
Ramana, D. K. V., Reddy, K. D. H., Kumar, B. N., Harinath, Y. & Seshaiah, K. Removal of nickel from aqueous solutions by citric acid modified Ceiba Pentandra Hulls: equilibrium and kinetic studies. Can. J. Chem. Eng. 90, 111–119 (2012).
Martín-Lara, M. A., Pagnanelli, F., Mainelli, S., Calero, M. & Toro, L. Chemical treatment of olive Pomace: effect on acid-basic properties and metal biosorption capacity. J. Hazard. Mater. 2012(156), 448–457 (2012).
Shadreck, M., Chigondo, F., Shumba, M., Nyamunda, B. C. & Edith, S. Removal of chromium (VI) from aqueous solution using chemically modified orange (Citrus Cinensis) peel. IOSR J. Appl. Chem. 6, 66–75 (2013).
Olu-owolabi, B. I., Oputu, O. U., Adebowale, K. O., Ogonsolu, O. & Olujimi, O. O. Biosorption of Cd2+ and Pb2+ ions onto mango stone and cocoa pod waste: kinetic and equilibrium studies. Sci. Res. Essays 7, 1614–1629 (2012).
Adhiambo, O.R., Lusweti, K.J. & Morang’a, G.Z. Biosorption of Pb2+ and Cr2+ Using Moringa oleifera and their adsorption isotherms. Sci. J. Anal. Chem., 3, 100–108 (2015).
Ofomaja, A. E., Naidoo, E. B. & Modise, S. J. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder. J. Environ. Manag. 91, 1674–1685 (2010).
Min, S. H., Han, J. S., Shin, E. W. & Park, J. K. Improvement of cadmium ion removal by base treatment of juniper fiber. Water Res. 38, 1289–1295 (2004).
Kapoor, A. & Viraraghavan, T. Heavy metal biosorption sites in Aspergillus Niger. Bioresour. Technol. 61, 221–227 (1997).
Vijayaraghavan, K. & Yun, Y. S. Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of reactive black 5 from aqueous solution. J. Hazard. Mater. 141, 45–52 (2007).
Alslaibi, T.M., Abustan, I., Ahmad, M.A. & Abu Foul, A. Comparative studies on the olive stone activated carbon adsorption of Zn2+, Ni2+, and Cd2+from synthetic wastewater. Desalin. Water Treat., 54, 166–177 (2015).
Papageorgiou, S. K. et al. Heavy metal sorption by calcium alginate beads from Laminaria digitata. J. Hazard. Mater. 137, 1765–1772 (2006).
Usman, A. R. A. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley Egypt. Geoderma 144, 334–343 (2008).
Gilbert, U. A., Emmanuel, I. U., Adebanjo, A. A. & Olalere, G. A. Biosorptive removal of Pb2+ and Cd2+ onto novel biosorbent: defatted Carica papaya seeds. Biomass Bioenergy 35, 2517–2525 (2011).
Jimoh, T. O., Yisa, J., Ajai, A. I. & Musa, A. Kinetics and thermodynamics studies of the biosorption of Pb(II), Cd(II) and Zn(II) ions from aqueous solution by sweet orange (Citrus sinensis) seeds. Int. J. Mod. Chem. 4, 19–37 (2013).
Shawabkeh, R., Al-Harahsheh, A., Hami, M. & Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater. Fuel 83, 981–985 (2004).
Politzer, P. & Murray, J.S. Molecular electrostatic potentials. In Concepts and Applications, (Theoretical and Computational Chemistry), 1st edn.; Murray, J.S., Sen, K., Eds.; Elsevier: Amsterdam, 3, 649–660 (1996).
Ibrahim, A., Elhaes, H., Meng, F. & Ibrahim, M. Effect of hydration on the physical properties of glucose. Biointerface Res. Appl. Chem. 8, 4114–4118 (2019).
Ibrahim, A., Elhaes, H., Ibrahim, M., Yahia, I. S. & Zahran, H. Y. Molecular modeling analyses for polyvinylidene X (X=F, Cl, Br and I). Biointerface Res. Appl. Chem. 9, 3890–3893 (2019).
Ezzat, H. et al. Mapping the molecular electrostatic potential of carbon nanotubes. Biointerface Res. Appl. Chem. 8, 3539–3542 (2018).
Msaada, A. et al. Industrial wastewater decolorization by activated carbon from Ziziphus lotus. Desalin. Water Treat. 126, 296–305 (2018).
Msaad, A., Belbahloul, M., El Hajjaji, S. & Zouhri, A. Comparison of novel Ziziphus lotus adsorbent and industrial carbon on methylene blue removal from aqueous solutions. Water Sci. Technol. 78(10), 2055–2063 (2018).
Msaad, A., Belbahloul, M., El Hajjaji, S., Zouhri, A. Synthesis of H3PO4 activated carbon from Ziziphus lotus (Z. mauritiana) leaves: optimization using RSM and cationic dye adsorption. Desalin. Water Treat. 153, 288–299 (2019).
Source: Ecology - nature.com