in

Interactions between coral propagules in aquarium and field conditions

  • 1.

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233. https://doi.org/10.1016/s0921-8009(99)00009-9 (1999).

    Article  Google Scholar 

  • 2.

    Lai, S., Loke, L. H. L., Hilton, M. J., Bouma, T. J. & Todd, P. A. The effects of urbanisation on coastal habitats and the potential for ecological engineering: a Singapore case study. Ocean Coast Manage. 103, 78–85. https://doi.org/10.1016/j.ocecoaman.2014.11.006 (2015).

    Article  Google Scholar 

  • 3.

    Ng, C. S. L., Toh, T. C. & Chou, L. M. Current status of coral reef restoration in Singapore. in Proceedings of the Asian Conference on Sustainability, Energy & the Environment, 546–558 (2013).

  • 4.

    Ng, C. S. L., Chen, D. & Chou, L. M. Hard coral assemblages on seawalls in Singapore. In Contributions to Marine Science (ed. Tan, K. S.) 75–79 (Tropical Marine Science Institute, Singapore, 2012).

    Google Scholar 

  • 5.

    Horoszowski-Fridman, Y. B. & Rinkevich, B. Restoration of the animal forests: harnessing silviculture biodiversity concepts for coral transplantation. In Marine Animal Forests (ed. Rossi, S.) 1313–1335 (Springer, Cham, 2016).

    Google Scholar 

  • 6.

    Ng, C. S. L. et al. Enhancing the biodiversity of coastal defence structures: transplantation of nursery-reared reef biota onto intertidal seawalls. Ecol. Eng. 82, 480–486. https://doi.org/10.1016/j.ecoleng.2015.05.016 (2015).

    Article  Google Scholar 

  • 7.

    Karlson, R. H. Dynamics of Coral Communities (Kluwer Academic Publishers, Dordrecht, 2002).

    Google Scholar 

  • 8.

    Glynn, P. W. & Enochs, I. C. Invertebrates and their roles in coral reef ecosystems. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 273–325 (Springer, Dordrecht, 2010).

    Google Scholar 

  • 9.

    Fong, P. & Paul, J. V. Coral reef algae: the good, the bad, and the ugly. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) (Springer, Dordrecht, 2010).

    Google Scholar 

  • 10.

    Swierts, T. & Vermeij, M. J. A. Competitive interactions between corals and turf algae depend on coral colony form. PeerJ 4, e1984. https://doi.org/10.7717/peerj.1984 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Lang, J. C. & Chornesky, E. A. Competition between scleractinian reef corals—a review of mechanisms and effects. In Ecosystems of the World (ed. Dubinsky, Z.) 133–206 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  • 12.

    Tanner, J. E. Interspecific competition reduces fitness in scleractinian corals. J. Exp. Mar. Biol. Ecol. 214, 19–34. https://doi.org/10.1016/S0022-0981(97)00024-5 (1997).

    Article  Google Scholar 

  • 13.

    Birrell, C. L., McCook, L. J., Willis, B. L. & Diaz-Pulido, G. A. Effects of benthic algae on the replenishment of corals and the implications for the resilience of coral reefs. Oceanogr. Mar. Biol. Ann. Rev. 46, 25–63 (2008).

    Google Scholar 

  • 14.

    Connell, J. H. et al. A long-term study of competition and diversity of corals. Ecol. Monogr. 74, 179–210. https://doi.org/10.1890/02-4043 (2004).

    Article  Google Scholar 

  • 15.

    Paine, R. T. Ecological determinism in the competition for space: the Robert H. MacArthur award lecture. Ecology 65, 1339–1348. https://doi.org/10.2307/1939114 (1984).

    Article  Google Scholar 

  • 16.

    Buss, L. W. Competition and community organization on hard surfaces in the sea. In Community Ecology (eds Diamond, J. & Case, T. J.) (Harper and Row, New York, 1986).

    Google Scholar 

  • 17.

    Chadwick, N. E. Spatial distribution and the effects of competition on some temperate scleractinia and coralliomorpharia. Mar. Ecol. Prog. Ser. 70, 39–48 (1991).

    ADS  Article  Google Scholar 

  • 18.

    Romano, S. L. Long-term effects of interspecific aggression on growth of the reef-building corals Cyphastrea ocellina (Dana) and Pocilloporu damicornis (Linnaeus). J. Exp. Mar. Biol. Ecol. 140, 135–146. https://doi.org/10.1016/0022-0981(90)90087-S (1990).

    Article  Google Scholar 

  • 19.

    Rinkevich, B. & Loya, Y. Intraspecific competition in a reef coral: effects on growth and reproduction. Oecologia 66, 100–105. https://doi.org/10.1007/BF00378559 (1985).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 20.

    Chadwick, N. E. & Morrow, K. M. Competition among sessile organisms on coral reefs. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 347–371 (Springer, Dordrecht, 2011).

    Google Scholar 

  • 21.

    Rinkevich, B. & Loya, Y. Intraspecific competitive networks in the Red Sea coral Stylophora pistillata. Coral Reefs 1, 161–172. https://doi.org/10.1007/BF00571193 (1983).

    ADS  Article  Google Scholar 

  • 22.

    Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).

    MathSciNet  CAS  Article  Google Scholar 

  • 23.

    Connell, J. H. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–669. https://doi.org/10.1086/284165 (1983).

    Article  Google Scholar 

  • 24.

    Schoener, T. W. Field experiments on interspecific competition. Am. Nat. 122, 240–285. https://doi.org/10.1086/284133 (1983).

    Article  Google Scholar 

  • 25.

    Barnes, R. S. K. & Hughes, R. N. An Introduction to Marine Ecology (Blackwell Scientific, Hoboken, 1988).

    Google Scholar 

  • 26.

    Abelson, A. & Loya, Y. Interspecific aggression among stony corals in Eilat, Red Sea: a hierarchy of aggression ability and related parameters. Br. Mar. Sci. 65, 851–860 (1999).

    Google Scholar 

  • 27.

    Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363. https://doi.org/10.1111/j.1461-0248.2008.01250.x (2008).

    Article  PubMed  Google Scholar 

  • 28.

    Breeuwer, A., Heijmans, M. P. D., Robroek, B. J. M. & Berendse, F. The effect of temperature on growth and competition between Sphagnum species. Oecologia 156, 155–167. https://doi.org/10.1007/s00442-008-0963-8 (2008).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Edmunds, P. J. et al. Persistence and change in community composition of reef corals through present, past, and future climates. PLoS ONE 9, e107525. https://doi.org/10.1371/journal.pone.0107525 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Hidaka, M. & Yamazato, K. Intraspecific interactions in a scleractinian coral, Galaxea fascicularis: induced formation of sweeper tentacles. Coral Reefs 3, 77–85. https://doi.org/10.1007/BF00263757 (1984).

    ADS  Article  Google Scholar 

  • 31.

    Lapid, E. D., Wielgus, J. & Chadwick-Furman, N. E. Sweeper tentacles of the brain coral Platygyra daedalea: induced development and effects on competitors. Mar. Ecol. Prog. Ser. 282, 161–171. https://doi.org/10.3354/meps282161 (2004).

    ADS  Article  Google Scholar 

  • 32.

    Bak, R. P. M., Termaat, R. M. & Dekker, R. Complexity of coral interactions: influence of time, location of interaction and epifauna. Mar. Biol. 69, 215–222. https://doi.org/10.1007/BF00396901 (1982).

    Article  Google Scholar 

  • 33.

    Lapid, E. D. & Chadwick, N. E. Long-term effects of competition on coral growth and sweeper tentacle development. Mar. Ecol. Prog. Ser. 313, 115–123. https://doi.org/10.3354/meps313115 (2006).

    ADS  Article  Google Scholar 

  • 34.

    Millar, K. J. The Platygyra species complex: implications for coral taxonomy and evolution. Dissertation, James Cook University of North Queensland (1994).

  • 35.

    Dai, C. F. Interspecific competition in Taiwanese corals with special reference to interactions between alcyonaceans and scleractinians. Mar. Ecol. Prog. Ser. 60, 291–297 (1990).

    ADS  Article  Google Scholar 

  • 36.

    Forsman, Z. H., Page, C. A., Toonen, R. J. & Vaughan, D. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover. PeerJ 3, e1313. https://doi.org/10.7717/peerj.1313 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Colinvaux, P. A. Introduction to Ecology (Wiley, New York, 1973).

    Google Scholar 

  • 38.

    Lang, J. C. Interspecific aggression by scleractinian corals. II. Why the race is not always to the swift. Bull. Mar. Sci. 23, 260–279 (1973).

    Google Scholar 

  • 39.

    Rinkevich, B. & Loya, Y. Oriented translocation of energy in grafted reef corals. Coral Reefs 1, 243–247. https://doi.org/10.1007/BF00304422 (1983).

    ADS  Article  Google Scholar 

  • 40.

    Chornesky, E. A. The ties that bind: inter-clonal cooperation may help a fragile coral dominate shallow high-energy reefs. Mar. Biol. 109, 41–51. https://doi.org/10.1007/BF01320230 (1991).

    Article  Google Scholar 

  • 41.

    Rejmanek, M. Intraspecific aggregation and species coexistence. Trends Ecol. Evol. 17, 209–210 (2002).

    Article  Google Scholar 

  • 42.

    Karlson, R. H., Cornell, H. V. & Hughes, T. P. Aggregation influences coral species richness at multiple spatial scales. Ecology 88, 170–177. https://doi.org/10.1890/0012-9658(2007)88[170:AICSRA]2.0.CO;2 (2007).

    Article  PubMed  Google Scholar 

  • 43.

    Idjadi, J. A. & Karlson, R. H. Spatial arrangement of competitors influences coexistence of reef-building corals. Ecology 88, 2449–2454. https://doi.org/10.1890/06-2031.1 (2007).

    Article  PubMed  Google Scholar 

  • 44.

    Edmunds, P. J. & Davies, P. S. An energy budget for Porites porites (Scleractinia). Mar. Biol. 92, 339–347. https://doi.org/10.1007/BF00392674 (1986).

    Article  Google Scholar 

  • 45.

    Vollmer, S. V. & Edmunds, P. J. Allometric scaling in small colonies of the scleractinian coral Siderastrea siderea (Ellis and Solander). Biol. Bull. 199, 21–28. https://doi.org/10.2307/1542703 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    Buss, L. W. Bryozoan overgrowth interactions—the interdependence of competition for space and food. Nature 281, 475–477. https://doi.org/10.1038/281475a0 (1979).

    ADS  Article  Google Scholar 

  • 47.

    Thongtham, N. & Chansang, H. Transplantation of Porites lutea to rehabilitate degraded coral reef at Maiton Island, Phuket, Thailand. in Proceedings of the 11th International Coral Reef Symposium, 1271–1274 (2009).

  • 48.

    dela Cruz, D. W., Rinkevich, B., Gomez, E. D. & Yap, H. T. Assessing an abridged nursery phase for slow growing corals used in coral restoration. Ecol. Eng. 84, 408–415. https://doi.org/10.1016/j.ecoleng.2015.09.042 (2015).

    Article  Google Scholar 

  • 49.

    Forrester, G. E., Ferguson, M. A., O’Connell-Rodwell, C. E. & Jarecki, L. L. Long-term survival and colony growth of Acropora palmata fragments transplanted by volunteers for restoration. Aquat. Conserv. 24, 81–91. https://doi.org/10.1002/aqc.2374 (2014).

    Article  Google Scholar 

  • 50.

    Edwards, A. J. & Clark, S. Coral transplantation: a useful management tool or misguided meddling?. Mar. Pollut. Bull. 37, 474–487. https://doi.org/10.1016/S0025-326X(99)00145-9 (1999).

    Article  Google Scholar 

  • 51.

    Harrison, P. L. & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals. In Coral Reefs. Ecosystems of the World (ed. Dubinski, Z.) 133–206 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  • 52.

    Koh, E. G. L. & Sweatman, H. Chemical warfare among scleractinians: bioactive natural products from Tubastrea faulkneri Wells kill larvae of potential competitors. J. Exp. Mar. Biol. Ecol. 251, 141–160. https://doi.org/10.1016/S0022-0981(00)00222-7 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 53.

    Van Veghel, M. L. J., Cleary, D. F. R. & Bak, R. P. M. Interspecific interactions and the competitive ability of the polymorphic reef-building coral Montastraea annularis. Bull. Mar. Sci. 58, 792–803 (1996).

    Google Scholar 

  • 54.

    Edwards, A. J. et al. Evaluating costs of restoration. In Reef Restoration Manual (ed. Edwards, A. J.) 113–128 (Coral Reef Targeted Research & Capacity Building for Management Program, St Lucia, 2010).

    Google Scholar 

  • 55.

    Huang, D. W., Tun, K. P. P., Chou, L. M. & Todd, P. A. An inventory of zooxanthellate scleractinian corals in Singapore, including 33 new records. Raffles B Zool. 22, 69–80 (2009).

    CAS  Google Scholar 

  • 56.

    Forsman, Z. H., Rinkevich, B. & Hubter, C. L. Investigating fragment size for culturing reef-building corals (Porites lobata and P. compressa) in ex situ nurseries. Aquaculture 261, 89–97. https://doi.org/10.1016/j.aquaculture.2006.06.040 (2006).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    An antidote to “fast fashion”

    A holistic approach in herbicide resistance research and management: from resistance detection to sustainable weed control