in

Dinoflagellates alter their carbon and nutrient metabolic strategies across environmental gradients in the central Pacific Ocean

  • 1.

    Pennington, J. T. et al. Primary production in the eastern tropical Pacific: a review. Prog. Oceanogr. 69, 285–317 (2006).

    Article  Google Scholar 

  • 2.

    Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Y. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Res. II 49, 463–507 (2002).

    CAS  Article  Google Scholar 

  • 3.

    Landry, M. R. et al. Biological response to iron fertilization in the eastern equatorial Pacific (IronEx II). I. Microplankton community abundances and biomass. Mar. Ecol. Prog. Ser. 201, 27–42 (2000).

    CAS  Article  Google Scholar 

  • 4.

    Saito, M. A. et al. Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers. Science 345, 1173–1177 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Stoecker, D. K., Hansen, P. J., Caron, D. A. & Mitra, A. Mixotrophy in the marine plankton. Ann. Rev. Mar. Sci. 9, 311–335 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Flynn, K. J. et al. Misuse of the phytoplankton–zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J. Plankton Res. 35, 3–11 (2013).

    Article  Google Scholar 

  • 8.

    Beisner, B. E. et al. A guide to methods for estimating phago-mixotrophy in nanophytoplankton. J. Plankton Res. 41, 77–89 (2019).

    CAS  Article  Google Scholar 

  • 9.

    Caron, D. A., Countway, P. D., Jones, A. C., Kim, D. Y. & Schnetzer, A. Marine protistan diversity. Ann. Rev. Mar. Sci. 4, 467–493 (2012).

    PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Ward, B. A. & Follows, M. J. Marine mixotrophy increases trophic transfer efficiency, mean organism size, and vertical carbon flux. Proc. Natl Acad. Sci. USA 113, 2958–2963 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Ward, B. A., Dutkiewicz, S., Barton, A. D. & Follows, M. J. Biophysical aspects of resource acquisition and competition in algal mixotrophs. Am. Nat. 178, 98–112 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Edwards, K. F. Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proc. Natl Acad. Sci. USA 116, 6211–6220 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Ward, B. A. Mixotroph ecology: more than the sum of its parts. Proc. Natl Acad. Sci. USA 116, 5846–5848 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. Commun. 9, 373 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 15.

    Caputi, L. et al. Community-level responses to iron availability in open ocean planktonic ecosystems. Global Biogeochem. Cycles 33, 391–419 (2019).

    CAS  Article  Google Scholar 

  • 16.

    Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 18.

    Le Bescot, N. et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ. Microbiol. 18, 609–626 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Gorsky, G. et al. Expanding Tara oceans protocols for underway, ecosystemic sampling of the ocean-atmosphere interface during Tara Pacific expedition (2016–2018). Front. Mar. Sci. 6, 750 (2019).

    Article  Google Scholar 

  • 21.

    Wilken, S. et al. The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Phil. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190090 (2019).

    CAS  Article  Google Scholar 

  • 22.

    Edgcomb, V. P. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr. Opin. Microbiol. 31, 169–175 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Robinson, C. et al. Mesopelagic zone ecology and biogeochemistry: a synthesis. Deep Sea Res. 2 Top. Stud. Oceanogr. 57, 1504–1518 (2010).

    CAS  Article  Google Scholar 

  • 24.

    Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).

    PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Hu, S. K. et al. Shifting metabolic priorities among key protistan taxa within and below the euphotic zone. Environ. Microbiol. 20, 2865–2879 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Jeong, H. J. et al. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): predator of diverse toxic and harmful dinoflagellates. Harmful Algae 60, 92–106 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 28.

    Hansen, P. J. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J. Eukaryot. Microbiol. 58, 203–214 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Adolf, J. E. et al. Species specificity and potential roles of Karlodinium micrum toxin. Afr. J. Mar. Sci. 28, 415–419 (2006).

    Article  Google Scholar 

  • 30.

    Glibert, P. M. et al. Grazing by Karenia brevis on Synechococcus enhances its growth rate and may help to sustain blooms. Aquat. Microb. Ecol. 55, 17–30 (2009).

    Article  Google Scholar 

  • 31.

    Kleiner, M. Assessing species biomass contributions in microbial communities via metaproteomics. Nat. Commun. 8, 1558 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 32.

    Chavez, F. P., Buck, K. R. & Barber, R. T. Phytoplankton taxa in relation to primary production in the equatorial Pacific. Deep Sea Res. A. 37, 1733–1752 (1990).

    Article  Google Scholar 

  • 33.

    Goericke, R. & Repeta, D. The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine procaryote. Limnol. Oceanogr. 37, 425–433 (1992).

    CAS  Article  Google Scholar 

  • 34.

    Irigoien, X., Meyer, B., Harris, R. & Harbour, D. Using HPLC pigment analysis to investigate phytoplankton taxonomy: the importance of knowing your species. Helgol. Mar. Res. 58, 77–82 (2004).

    Article  Google Scholar 

  • 35.

    Binder, B. J., Chisholm, S. W., Olson, R. J., Frankel, S. L. & Worden, A. Z. Dynamics of picophytoplankton, ultraphytoplankton and bacteria in the central equatorial Pacific. Deep Sea Res. 2 Top. Stud. Oceanogr. 43, 907–931 (1996).

    Article  Google Scholar 

  • 36.

    de Baar, H. J. W. et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. Oceans 110, C09S16 (2005).

    Article  CAS  Google Scholar 

  • 37.

    Bodył, A. & Moszczyński, K. Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis. Eur. J. Phycol. 41, 435–448 (2006).

    Article  Google Scholar 

  • 38.

    Ishida, K.-I. & Green, B. R. Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc. Natl Acad. Sci. USA 99, 9294–9299 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    De salas, M. F. et al. Takayama gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmored dinoflagellates with sigmoid apical grooves, including the description of two new species. J. Phycol. 39, 1233–1246 (2003).

    Article  Google Scholar 

  • 40.

    Yoon, H. S., Hackett, J. D. & Bhattacharya, D. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl Acad. Sci. USA 99, 11724–11729 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Chavez, F. P., Buck, K. R., Service, S. K., Newton, J. & Barber, R. T. Phytoplankton variability in the central and eastern tropical Pacific. Deep Sea Res. 2 Top. Stud. Oceanogr. 43, 835–870 (1996).

    CAS  Article  Google Scholar 

  • 42.

    Jeong, H. J. et al. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45, 65–91 (2010).

    CAS  Article  Google Scholar 

  • 43.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 44.

    Labarre, A., Obiol, A., Wilken, S., Forn, I. & Massana, R. Expression of genes involved in phagocytosis in uncultured heterotrophic flagellates. Limnol. Oceanogr. 65, S149–S160 (2020).

    CAS  Article  Google Scholar 

  • 45.

    Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Zhang, Y. Metatranscriptomic signatures associated with phytoplankton regime shift from diatom dominance to a dinoflagellate bloom. Front. Microbiol. 10, 590 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Liu, Z., Campbell, V., Heidelberg, K. B. & Caron, D. A. Gene expression characterizes different nutritional strategies among three mixotrophic protists. FEMS Microbiol. Ecol. 92, fiw106 (2016).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 48.

    Yu, L. et al. Comparative metatranscriptomic profiling and microRNA sequencing to reveal active metabolic pathways associated with a dinoflagellate bloom. Sci. Total Environ. 699, 134323 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Zhuang, Y., Zhang, H., Hannick, L. & Lin, S. Metatranscriptome profiling reveals versatile N-nutrient utilization, CO2 limitation, oxidative stress, and active toxin production in an Alexandrium fundyense bloom. Harmful Algae 42, 60–70 (2015).

    CAS  Article  Google Scholar 

  • 50.

    Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 51.

    Perret, E., Davoust, J., Albert, M., Besseau, L. & Soyer-Gobillard, M. O. Microtubule organization during the cell cycle of the primitive eukaryote dinoflagellate Crypthecodinium cohnii. J. Cell Sci. 104, 639–651 (1993).

    PubMed  PubMed Central  Google Scholar 

  • 52.

    Brown, D. L., Cachon, J., Cachon, M. & Boillot, A. The cytoskeletal microtubular system of some naked dinoflagellates. Cell Motil. 9, 361–374 (1988).

    Article  Google Scholar 

  • 53.

    Gagnon, C. et al. The polyglutamylated lateral chain of alpha-tubulin plays a key role in flagellar motility. J. Cell Sci. 109, 1545–1553 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Okamoto, N. & Keeling, P. A comparative overview of the flagellar apparatus of dinoflagellate, perkinsids and colpodellids. Microorganisms 2, 73–91 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    McKie-Krisberg, Z. M., Sanders, R. W. & Gast, R. J. Evaluation of mixotrophy-associated gene expression in two species of polar marine algae. Front. Mar. Sci. 5, 273 (2018).

    Article  Google Scholar 

  • 56.

    Rubin, E. T., Cheng, S., Montalbano, A. L., Menden-Deuer, S. & Rynearson, T. A. Transcriptomic response to feeding and starvation in a herbivorous dinoflagellate. Front. Mar. Sci. 6, 246 (2019).

    Article  Google Scholar 

  • 57.

    Lie, A. A. Y. et al. Effect of light and prey availability on gene expression of the mixotrophic chrysophyte, Ochromonas sp. BMC Genomics 18, 163 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 58.

    Massana, R. et al. Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate. ISME J. https://doi.org/10.1038/s41396-020-00770-4 (2020).

  • 59.

    Santoferrara, L. F., Guida, S., Zhang, H. & McManus, G. B. De novo transcriptomes of a mixotrophic and a heterotrophic ciliate from marine plankton. PLoS ONE 9, e101418 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 60.

    Bouché, N., Yellin, A., Snedden, W. A. & Fromm, H. Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56, 435–466 (2005).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 61.

    Crivici, A. & Ikura, M. Molecular and structural basis of target recognition by calmodulin. Annu. Rev. Biophys. Biomol. Struct. 24, 85–116 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Becker, K. et al. Quantifying post-transcriptional regulation in the development of Drosophila melanogaster. Nat. Commun. 9, 4970 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 63.

    Slamovits, C., Okamoto, N., Burri, L. James, E. R. & Keeling, P. J. A bacterial proteorhodopsin proton pump in marine eukaryotes. Nat. Commun. 2, 183 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 64.

    Lin, S. Genomic understanding of dinoflagellates. Res. Microbiol. 162, 551–569 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Olson, D. K., Yoshizawa, S., Boeuf, D., Iwasaki, W. & Delong, E. F. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 12, 1047–1060 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Guo, Z., Zhang, H., Liu, S. & Lin, S. Biology of the marine heterotrophic dinoflagellate Oxyrrhis marina: current status and future directions. Microorganisms 1, 33–57 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Guo, Z., Zhang, H. & Lin, S. Light-promoted rhodopsin expression and starvation survival in the marine dinoflagellate Oxyrrhis marina. PLoS ONE 9, e114941 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 68.

    Taylor, A. G., Landry, M. R., Selph, K. E. & Yang, E. J. Biomass, size structure and depth distributions of the microbial community in the eastern equatorial Pacific. Deep Sea Res. 2 Top. Stud. Oceanogr. 58, 342–357 (2011).

    CAS  Article  Google Scholar 

  • 69.

    Takahashi, M., Satake, K.-I. & Nakamoto, N. Chlorophyll distribution and photosynthetic activity in the north and equatorial Pacific Ocean along 155°W. J. Oceanogr. Soc. Japan 28, 27–36 (1972).

    Article  Google Scholar 

  • 70.

    Ducklow, H. W. The bacterial component of the oceanic euphotic zone. FEMS Microbiol. Ecol. 30, 1–10 (1999).

    CAS  Article  Google Scholar 

  • 71.

    Behrmann, G. & Hardeland, R. Ultrastructural characterization of asexual cysts of Gonyaulax polyedra Stein (Dinoflagellata). Protoplasma 185, 22–27 (1995).

    Article  Google Scholar 

  • 72.

    Roy, S., Letourneau, L. & Morse, D. Cold-induced cysts of the photosynthetic dinoflagellate Lingulodinium polyedrum have an arrested circadian bioluminescence rhythm and lower levels of protein phosphorylation. Plant Physiol. 164, 966–977 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Bravo, I. & Figueroa, R. I. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2, 11–32 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Gotthardt, D. et al. High-resolution dissection of phagosome maturation reveals distinct membrane trafficking phases. Mol. Biol. Cell 13, 3508–3520 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Keeling, P, J. et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 76.

    Garcia, H. E. et al. World Ocean Atlas 2013. Volume 4, Dissolved Inorganic Nutrients (Phosphate, Nitrate, Silicate) NOAA Atlas NESDIS Series 76 (NOAA, 2013); https://www.nodc.noaa.gov/OC5/woa13/pubwoa13.html

  • 77.

    Alexander, H., Jenkins, B. D., Rynearson, T. A. & Dyhrman, S. T. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc. Natl Acad. Sci. USA 112, E2182–E2190 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 78.

    Bender, S. J., Parker, M. S. & Armbrust, E. V. Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana. Protist 163, 232–251 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Groussman, R. D., Parker, M. S. & Armbrust, E. V. Diversity and evolutionary history of iron metabolism genes in diatoms. PLoS ONE 10, e0129081 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 80.

    Marchetti, A. et al. Development of a molecular-based index for assessing iron status in bloom-forming pennate diatoms. J. Phycol. 53, 820–832 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 81.

    Chappell, P. D. et al. Genetic indicators of iron limitation in wild populations of Thalassiosira oceanica from the northeast Pacific Ocean. ISME J. 9, 592–602 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 82.

    McQuaid, J. B. et al. Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms. Nature 555, 534–537 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 83.

    Morrissey, J. et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr. Biol. 25, 364–371 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 84.

    Allen, A. E. et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA 105, 10438–10443 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 85.

    Erdner, D. L. & Anderson, D. M. Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment. Limnol. Oceanogr. 44, 1609–1615 (1999).

    CAS  Article  Google Scholar 

  • 86.

    La Roche, J., Boyd, P. W., McKay, R. M. L. & Geider, R. J. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature 382, 802–805 (1996).

    CAS  Article  Google Scholar 

  • 87.

    Peers, G. & Price, N. M. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441, 341–344 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 88.

    Morey, J. S. et al. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition. BMC Genomics 12, 346 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 89.

    Jing, X., Lin, S., Zhang, H., Koerting, C. & Yu, Z. Utilization of urea and expression profiles of related genes in the dinoflagellate Prorocentrum donghaiense. PLoS ONE 12, e0187837 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 90.

    Fan, C., Glibert, P. M., Alexander, J. & Lomas, M. W. Characterization of urease activity in three marine phytoplankton species, Aureococcus anophagefferens, Prorocentrum minimum, and Thalassiosira weissflogii. Mar. Biol. 142, 949–958 (2003).

    CAS  Article  Google Scholar 

  • 91.

    Shilova, I. N. et al. Differential effects of nitrate, ammonium, and urea as N sources for microbial communities in the North Pacific Ocean. Limnol. Oceanogr. 62, 2550–2574 (2017).

    CAS  Article  Google Scholar 

  • 92.

    Casey, J. R., Lomas, M. W., Mandecki, J. & Walker, D. E. Prochlorococcus contributes to new production in the Sargasso Sea deep chlorophyll maximum. Geophys. Res. Lett. 34, L10604 (2007).

    Article  CAS  Google Scholar 

  • 93.

    Price, N. M. & Morel, F. M. M. Cadmium and cobalt substitution for zinc in a marine diatom. Nature 344, 658–660 (1990).

    CAS  Article  Google Scholar 

  • 94.

    McGinn, P. J. & Morel, F. M. M. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol. Plant. 133, 78–91 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 95.

    Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 96.

    Bertrand, E. M. et al. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc. Natl Acad. Sci. USA 112, 9938–9943 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 97.

    Bender, S. J., Durkin, C. A., Berthiaume, C. T., Morales, R. L. & Armbrust, E. V. Transcriptional responses of three model diatoms to nitrate limitation of growth. Front. Mar. Sci. 1, 3 (2014).

    Article  Google Scholar 

  • 98.

    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. A 34, 267–285 (1987).

    CAS  Article  Google Scholar 

  • 99.

    Gloege, L., McKinley, G. A., Mouw, C. B. & Ciochetto, A. B. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2. Global Biogeochem. Cycles 31, 1192–1215 (2017).

    CAS  Article  Google Scholar 

  • 100.

    Smayda, T. J. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behaviour. Prog. Oceanogr. 85, 71–91 (2010).

    Article  Google Scholar 

  • 101.

    Raven, J. A. & Richardson, K. Dinophyte flagella: a cost–benefit analysis. New. Phytol. 98, 259–276 (1984).

    Article  Google Scholar 

  • 102.

    Hou, Y. & Lin, S. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS ONE 4, e6978 (2009).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 103.

    Lin, S. The smallest dinoflagellate genome is yet to be found: a comment on LaJeunesse et al. ‘Symbiodinium (Pyrrophyta) genome sizes (DNA content) are smallest among dinoflagellates’. J. Phycol. 42, 746–748 (2006).

    Article  Google Scholar 

  • 104.

    Fuhrman, J. Genome sequences from the sea. Nature 424, 1001–1002 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 105.

    Rocap, G. et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424, 1042–1047 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 106.

    Saito, M. A. et al. Needles in the blue sea: sub-species specificity in targeted protein biomarker analyses within the vast oceanic microbial metaproteome. Proteomics 15, 3521–3531 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 107.

    Cutter, G. et al. Sampling and sample-handling protocols for GEOTRACES cruises. EPIC Eprint https://epic.awi.de/id/eprint/34484/ (2010).

  • 108.

    Anderson, R. F. & Henderson, G. M. GEOTRACES: a global study of the marine biogeochemical cycles of trace elements and their isotopes. Oceanography 18, 76–79 (2005).

    Article  Google Scholar 

  • 109.

    Saito, M. A. & Schneider, D. L. Examination of precipitation chemistry and improvements in precision using the Mg(OH)2 preconcentration inductively coupled plasma mass spectrometry (ICP-MS) method for high-throughput analysis of open-ocean Fe and Mn in seawater. Anal. Chim. Acta 565, 222–233 (2006).

    CAS  Article  Google Scholar 

  • 110.

    Munson, K. M., Lamborg, C. H., Swarr, G. J. & Saito, M. A. Mercury species concentrations and fluxes in the Central Tropical Pacific Ocean. Global Biogeochem. Cycles 29, 656–676 (2015).

    CAS  Article  Google Scholar 

  • 111.

    Lu, X. & Zhu, H. Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol. Cell. Proteomics 4, 1948–1958 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    Vizcaíno, J. A. et al. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41, D1063–D1069 (2013).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 113.

    Zhang, Y., Wen, Z., Washburn, M. P. & Florens, L. Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins. Anal. Chem. 82, 2272–2281 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 114.

    Schmieder, R., Lim, Y. W. & Edwards, R. Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics 28, 433–435 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 115.

    Rho, M., Tang, H. & Ye, Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 116.

    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).

  • 117.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Article  Google Scholar 

  • 118.

    Kolody, B. C. et al. Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME J. 13, 2817–2833 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 119.

    Ogata, H. & et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 120.

    Nordberg, H. et al. The genome portal of the Department of Energy joint genome institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 121.

    Hancock, J. M., Zvelebil, M. J., Hancock, J. M. & Bishop, M. J. in Dictionary of Bioinformatics and Computational Biology (eds Hancock, J. M. & Zvelebil, M. J.) (Wiley, 2004).

  • 122.

    Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    CAS  Article  Google Scholar 

  • 123.

    Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 124.

    Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493–500 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 125.

    Lane, D. J. et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl Acad. Sci. USA 82, 6955–6959 (1985).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 126.

    Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 127.

    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 128.

    Hugerth, L. W. et al. Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS ONE 9, e95567 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 129.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 130.

    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 131.

    Mordret, S. et al. dinoref: a curated dinoflagellate (Dinophyceae) reference database for the 18S rRNA gene. Mol. Ecol. Resour. 18, 974–987 (2018).

    CAS  Article  Google Scholar 

  • 132.

    Decelle, J. et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 133.

    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 134.

    Chen, I.-M. A. et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 47, D666–D677 (2018).

    Article  CAS  Google Scholar 

  • 135.

    Dupont, C. L. et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 9, 1076–1092 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 136.

    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 137.

    Hothorn, T., Hornik, K., de Wiel, M. & Zeileis, A. coin: Conditional inference procedures in a permutation test framework. R package version 0.6.6 https://rdrr.io/cran/coin/ (2006).

  • 138.

    McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 139.

    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.3-0 https://cran.r-project.org/web/packages/vegan/index.html (2015).

  • 140.

    Johnson, L. K., Alexander, H. & Brown, C. T. Re-assembly, quality evaluation, and annotation of 678 microbial eukaryotic reference transcriptomes. Gigascience 8, giy158 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 141.

    Madeira, F. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 142.

    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2: a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 143.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 144.

    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics 11, 538 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 145.

    Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T.-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).

    Article  Google Scholar 

  • 146.

    Brown, M. Ocean Data View 4.0. Oceanography 11, 19–21 (1998).

    Article  Google Scholar 

  • 147.

    Garcia, H. E. et al. World Ocean Atlas 2009, Volume 4: Nutrients (Phosphate, Nitrate, and Silicate) (ed. Levitus, S.) (US Government Printing Office, 2010).


  • Source: Ecology - nature.com

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms

    Portable device can quickly detect plant stress