in

Polarization of microbial communities between competitive and cooperative metabolism

  • 1.

    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Raaijmakers, J. M. & Mazzola, M. Soil immune responses. Science 352, 1392–1393 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 4.

    Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Lawson, C. E. et al. Common principles and best practices for engineering microbiomes. Nat. Rev. Microbiol. 17, 725–741 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Armstrong, R. A. & McGehee, R. Competitive exclusion. Am. Nat. 115, 151–170 (1980).

    Article  Google Scholar 

  • 11.

    Tan, J., Zuniga, C. & Zengler, K. Unraveling interactions in microbial communities – from co-cultures to microbiomes. J. Microbiol. 53, 295–305 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Zengler, K. & Zaramela, L. S. The social network of microorganisms—how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Freilich, S. et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat. Commun. 2, 589 (2011).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 14.

    Levy, R. & Borenstein, E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl Acad. Sci. USA 110, 12804–12809 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Billick, I. & Case, T. J. Higher order interactions in ecological communities: what are they and how can they be detected? Ecology 75, 1529–1543 (1994).

    Article  Google Scholar 

  • 17.

    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).

    Article  Google Scholar 

  • 18.

    Morin, M., Pierce, E. C. & Dutton, R. J. Changes in the genetic requirements for microbial interactions with increasing community complexity. eLife 7, e37072 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 21.

    Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Freilich, S. et al. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Res. 38, 3857–3868 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 24.

    Faust, K. et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput. Biol. 8, e1002606 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Zomorrodi, A. R. & Maranas, C. D. OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities. PLoS Comput. Biol. 8, e1002363 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Khandelwal, R. A., Olivier, B. G., Röling, W. F. M., Teusink, B. & Bruggeman, F. J. Community flux balance analysis for microbial consortia at balanced growth. PLoS ONE 8, e64567 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Chan, S. H. J., Simons, M. N. & Maranas, C. D. SteadyCom: predicting microbial abundances while ensuring community stability. PLoS Comput. Biol. 13, e1005539 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 28.

    Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl Acad. Sci. USA 111, E2149–E2156 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Chaffron, S., Rehrauer, H., Pernthaler, J. & Mering, C. V. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Amarasekare, P. Interference competition and species coexistence. Proc. R. Soc. Lond. B 269, 2541–2550 (2002).

    Article  Google Scholar 

  • 32.

    Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Crump, B. C., Amaral-Zettler, L. A. & Kling, G. W. Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 6, 1629–1639 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. mBio 6, e02527-14 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Nolan, M. J. et al. Molecular-based investigation of Cryptosporidium and Giardia from animals in water catchments in southeastern Australia. Water Res. 47, 1726–1740 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Haig, S.-J., Quince, C., Davies, R. L., Dorea, C. C. & Collins, G. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters. Water Res. 61, 141–151 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Koehler, A. V., Haydon, S. R., Jex, A. R. & Gasser, R. B. Cryptosporidium and Giardia taxa in faecal samples from animals in catchments supplying the city of Melbourne with drinking water (2011 to 2015). Parasit. Vectors 9, 315 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 40.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Rivière, A., Gagnon, M., Weckx, S., Roy, D. & Vuyst, L. D. Mutual cross-feeding interactions between Bifidobacterium longum subsp. longum NCC2705 and Eubacterium rectale ATCC 33656 explain the bifidogenic and butyrogenic effects of arabinoxylan oligosaccharides. Appl. Environ. Microbiol. 81, 7767–7781 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 42.

    D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Pacheco, A. R. & Segrè, D. A multidimensional perspective on microbial interactions. FEMS Microbiol. Lett. 366, fnz125 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Barton, M. D., Delneri, D., Oliver, S. G., Rattray, M. & Bergman, C. M. Evolutionary systems biology of amino acid biosynthetic cost in yeast. PLoS ONE 5, e11935 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Campbell, K. et al. Self-establishing communities enable cooperative metabolite exchange in a eukaryote. eLife 4, e09943 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    D’Souza, G. & Kost, C. Experimental evolution of metabolic dependency in bacteria. PLoS Genet. 12, e1006364 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Harcombe, W. Novel cooperation experimentally evolved between species. Evolution 64, 2166–2172 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Valen, L. V. A new evolutionary law. Evol. Theory 1, 1–30 (1973).

    Google Scholar 

  • 52.

    Morris, J. J., Lenski, R. E. & Zinser, E. R. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3, e00036-12 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Bosch, A. A. T. M., Biesbroek, G., Trzcinski, K., Sanders, E. A. M. & Bogaert, D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 9, e1003057 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Peleg, A. Y., Hogan, D. A. & Mylonakis, E. Medically important bacterial–fungal interactions. Nat. Rev. Microbiol. 8, 340–349 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction analysis, and visualization of phylogenomic data. Mol. Biol. Evol. 33, 1635–1638 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 8, 275–282 (1992).

    CAS  Article  Google Scholar 

  • 58.

    Ciccarelli, F. D. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–884 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Sievers, F. et al. Fast scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539–539 (2014).

    Article  Google Scholar 

  • 61.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 62.

    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).

    Article  CAS  Google Scholar 

  • 63.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  • 65.

    Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Aerosols from pollution, desert storms, and forest fires may intensify thunderstorms

    Portable device can quickly detect plant stress