in

Evaluation of the chemical defense fluids of Macrotermes carbonarius and Globitermes sulphureus as possible household repellents and insecticides

  • 1.

    Batalha, L. S., Silva Filho, D. F. & Martius, C. Using termite nests as a source of organic matter in agrosilvicultural production systems in Amazonia. Scientia Agricola 52, 318–325 (1995).

    Article  Google Scholar 

  • 2.

    Ayuke, F. O. et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil. Ecol. 48, 53–62 (2011).

    Article  Google Scholar 

  • 3.

    Jouquet, P., Chaudhary, E. & Kumar, A. R. V. Sustainable use of termite activity in agro-ecosystems with reference to earthworms A review. Agron. Sustain. Dev. 38, 3 (2018).

    Article  Google Scholar 

  • 4.

    Deligne, J., Quennedey, A. & Blum, M. S. The enemies and defense mechanisms of termites. In Social Insects (ed. Hermann, H. R.) 1–76 (Academic Press, Cambridge, 1981).

    Google Scholar 

  • 5.

    Grasse, P. P. Termitologia, Tome III (Masson, Paris, 1986).

    Google Scholar 

  • 6.

    Prestwich, G. D. Defense mechanisms of termites. Annu. Rev. Entomol. 29(1), 201–232 (1984).

    CAS  Article  Google Scholar 

  • 7.

    Chuah, C. H. Chemical Weapons and Defense Mechanism of Malaysian Termites. In Chemistry in Malaysia 4–11 (Institut Kimia Malaysia, 2010).

  • 8.

    Iida, M. & Akino, T. Defensive effect of soldier-specific secretion by Reticulitermes speratus (Isoptera: Rhinotermitidae) on the facultative termitophagous ponerine ant, Brachyponera chinensis (Hymenoptera: Ponerinae). Appl. Entomol. Zool. 51, 111–116 (2016).

    Article  Google Scholar 

  • 9.

    Kori, N. S. M. & Arumugam, N. Termites of Agropark, Universiti Malaysia Kelantan, Jeli Campus: Diversity and pest composition. J. Trop. Resour. Sustain. Sci. 5, 104–108 (2017).

    Google Scholar 

  • 10.

    Alia-Diyana, M. H., Appalasamy, S. & Arumugam, N. Termite species and structural pest identification in selected rural areas of Kelantan, Malaysia. IOP Conf. Ser. Earth and Environ. Sci. https://doi.org/10.1088/1755-1315/549/1/012053 (2020).

    Article  Google Scholar 

  • 11.

    Sillam-Dussès, D. et al. Comparative Study of the Labial Gland Secretion in Termites (Isoptera). PLoS ONE 7(10), e46431 (2012).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 12.

    Wyatt, T. D. Pheromones and other chemical communication in animals. In Encyclopedia of Neuroscience (ed. Squire, L. R.) 611–616 (Academic Press, Oxford, 2017).

    Google Scholar 

  • 13.

    Ahmad, N. & Kamarudin, N. Pheromone Trapping in Controlling Key Insect Pests: Progress and Prospects (Malaysia Palm Oil Board, Kajang, 2016).

    Google Scholar 

  • 14.

    Matthews, G. Pesticides: Health, Safety and the Environment (Wiley Blackwell, Chichester, 2015).

    Google Scholar 

  • 15.

    Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Ann. Rev. Entomol. 52(1), 81–106 (2007).

    CAS  Article  Google Scholar 

  • 16.

    Rattan, R. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Prot. 29(9), 913–920 (2010).

    CAS  Article  Google Scholar 

  • 17.

    Regnault-Roger, C., Vincent, C. & Arnason, J. T. Essential oils in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 57, 405–424 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 18.

    Pavela, R. & Benelli, G. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends Plant Sci. 21(12), 1000–1007 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 19.

    Chouvenc, T., Su, N. & Kenneth, G. J. Fifty years of attempted biological control of termites—Analysis of a failure. Biol. Control 59(2), 69–82 (2011).

    Article  Google Scholar 

  • 20.

    Meikle, W. G. et al. Evaluation of an entomopathogenic fungus, Paecilomyces fumosoroseus (Wize) Brown and Smith (Deuteromycota: Hyphomycetes) obtained from Formosan subterranean termites (Isop, Rhinotermitidae). J. Appl. Entomol. 129(6), 315–322 (2005).

    Article  Google Scholar 

  • 21.

    Tho, Y. P. Termites of Peninsular Malaysia (Forest Research Institute Malaysia, Selangor, 1992).

    Google Scholar 

  • 22.

    Krasulova, J. et al. Chemistry and anatomy of the frontal gland in soldiers of the sand termite Psammotermes hybostoma. J. Chem. Ecol. 38(5), 557–565 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Bakaruddin, N. H., Dieng, H., Sulaiman, S. F. & Ab Majid, A. H. Evaluation of the toxicity and repellency of tropical plant extract against subterranean termites, Globitermes sulphureus and Coptotermes gestroi. Inf. Process. Agric. 5(3), 298–307 (2018).

    Google Scholar 

  • 24.

    Lee, C. C. & Lee, C. Y. A laboratory maintenance regime for a fungus-growing termite Macrotermes gilvus (Blattodea: Termitidae). J. Econ. Entomol. 108(3), 1243–1250 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Zibaee, I. & Pooya, B. K. Evaluation of repellent activity of two essential oils and their mixed formulation against cockroaches (Dictyoptera: Blattidae, Blattellidae) in Iran. J. Entomol. Zool. Stud. 4, 106 (2016).

    Google Scholar 

  • 26.

    OECD. Guidance Document on Assays for Testing the Efficacy of Baits Against Cockroaches Health and Safety Publications (OECD Environment, Paris, 2013).

    Google Scholar 

  • 27.

    Syed, R., Manzoor, F., Adalat, R., Abdul-Sattar, A. & Syed, A. Laboratory evaluation of toxicity of insecticide formulations from different classes against American cockroach (Dictyoptera: Blattidae). J. Arthropod-Borne Dis. 8(1), 21–34 (2014).

    PubMed  Google Scholar 

  • 28.

    Ohta, M., Matsuura, F., Henderson, G. & Laine, R. A. Novel free ceramides as components of the soldier defense gland of the Formosan subterranean termite (Coptotermes formosanus). J. Lipid Res. 48(3), 656–664 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    McDonald, L. L., Guy, R. H. & Speirs, R. D. Preliminary evaluation of new candidate materials as toxicants, repellents, and attractants against stored-product insects-1 (Agriculture Research Service, 1970).

  • 30.

    Johnson, R. A., Thomas, R. J., Wood, T. G. & Swift, M. J. The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. J. Nat. Hist. 15(5), 751–756 (2007).

    Article  Google Scholar 

  • 31.

    de Mello, A. P., Azevedo, N. R., da Silva, A. M. B. & Gusmão, M. A. B. Chemical composition and variability of the defensive secretion in Nasutitermes corniger (Motschulsky, 1885) in urban area in the Brazilian semiarid region. Entomotropica 31, 82–90 (2016).

    Google Scholar 

  • 32.

    Bordereau, C., Robert, A., Van Tuyen, V. & Peppuy, A. Suicidal defensive behaviour by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insectes Soc. 44(3), 289–297 (1997).

    Article  Google Scholar 

  • 33.

    Touchard, A., Dejean, A., Escoubas, P. & Orivel, J. Intraspecific variations in the venom peptidome of the ant Odontomachus haematodus (Formicidae: Ponerinae) from French Guiana. J. Hymenoptera Res. 47, 87–101 (2015).

    Article  Google Scholar 

  • 34.

    Aguilera-Olivares, D., Burgos-Lefimil, C., Melendez, W., Flores-Prado, L. & Niemeyer, H. M. Chemical basis of nestmate recognition in a defense context in a one-piece nesting termite. Chemoecology 26(5), 163–172 (2016).

    Article  Google Scholar 

  • 35.

    Kuswanto, E., Ahmad, I., Putra, R. E. & Harahap, I. S. Two novel volatile compounds as the key for intraspecific colony recognition in Macrotermes gilvus (Isoptera: Termitidae). J. Entomol. 12(2), 87–94 (2015).

    CAS  Article  Google Scholar 

  • 36.

    Ismanto, A. & Baedowi, A. Efikasi ekstrak akar tuba dalam mengendalikan rayap tanah Macrotermes gilvus hagen pada pertanaman kayu putih. Jurnal Ecogreen. 5(1), 57–62 (2019).

    Google Scholar 

  • 37.

    Jones, T. H. et al. The chemistry of exploding ants, Camponotus spp. (cylindricus complex). J. Chem. Ecol. 30(8), 1479–1492 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Laciny, A. et al. Colobopsis explodens sp. n., model species for studies on “exploding ants” (Hymenoptera, Formicidae), with biological notes and first illustrations of males of the Colobopsis cylindrica group. ZooKeys 751, 1–40 (2018).

    Article  Google Scholar 

  • 39.

    Kuwahara, Y. Chemical Ecology of Astigmatid Mites (Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  • 40.

    Iqbal, N. & Saeed, S. Toxicity of six new chemical insecticides against the termite, Microtermes mycophagus D. (Isoptera: Termitidae: Macrotermitinae). Pak. J. Zool. 45(3), 709–713 (2013).

    CAS  Google Scholar 

  • 41.

    Lihoreau, M. & Rivault, C. Kin recognition via cuticular hydrocarbons shapes cockroach social life. Behav. Ecol. 20, 46–53 (2009).

    Article  Google Scholar 

  • 42.

    Emanuel, S. & Libersat, F. Nociceptive Pathway in the cockroach Periplaneta americana. Front. Physiol. https://doi.org/10.3389/fphys.2019.01100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Deisig, N., Dupuy, F., Anton, S. & Renou, M. Responses to pheromones in a complex odor world: Sensory processing and behavior. Insects. 5(2), 399–422 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Nishino, H. et al. Spatial receptive fields for odor localization. Curr. Biol. 28(4), 600–608 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Sandoz, J. C., Pham, D. M., Renou, M. & Wadhams, L. Asymmetrical generalisation between pheromonal and floral odours in appetitive olfactory conditioning of the honey bee (Apis mellifera L.). J. Comp. Physiol. 187, 559–568 (2001).

    CAS  Article  Google Scholar 

  • 46.

    Kreher, S. A., Kwon, J. Y. & Carlson, J. R. The molecular basis of odor coding in the Drosophila larva. Neuron 46(3), 445–456 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Grosjean, Y. et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature 478(7368), 236 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Vosshall, L. B. & Hansson, B. S. A unified nomenclature system for the insect olfactory coreceptor. Chem. Senses 36(6), 497–498 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Peschke, K. & Eisner, T. Defensive secretion of the tenebrionid beetle, Blaps mucronata: Physical and chemical determinants of effectiveness. J. Comp. Physiol. 161(3), 377–388 (1987).

    CAS  Article  Google Scholar 

  • 50.

    Dettner, K. Solvent-dependent variablity of effectiveness of quinone-defensive systems of Oxytelinae beetles (Coleoptera: Staphylinidae). Entomologia Generalis. 15, 275–292 (1991).

    Article  Google Scholar 

  • 51.

    Roth, L. & Eisner, T. Chemical defenses of arthropods. Ann. Rev. Entomol. 7, 107–136 (2003).

    Article  Google Scholar 

  • 52.

    Li, J. et al. Odoriferous defensive stink gland transcriptome to identify novel genes necessary for quinone synthesis in the red flour beetle Tribolium castaneum. PLoS Genet. 9(7), 1003596–1003596 (2013).

    Article  CAS  Google Scholar 

  • 53.

    Delattre, O. et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69(12), 1945–1955 (2015).

    Article  Google Scholar 

  • 54.

    Prestwich, G. D. & Chen, D. Soldier defense secretions of Trinervitermes bettonianus (Isoptera, Nasutitermitinae): Chemical variation in allopatric populations. J. Chem. Ecol. 7(1), 147–157 (1981).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Piper, R. Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals (Greenwood Publishing Group, Westport, 2007).

    Google Scholar 

  • 56.

    Costa-Leonardo, A. A new interpretation of the defense glands of neotropical Ruptitermes (Isoptera, Termitidae, Apicotermitinae). Sociobiology 44, 391–402 (2004).

    Google Scholar 

  • 57.

    Reinhard, J., Lacey, M. & Lenz, M. Application of the natural phagostimulant hydroquinone in bait systems for termite management (Isoptera). Sociobiology 39(2), 213–230 (2002).

    Google Scholar 

  • 58.

    Hasyim, A., Istianto, M. & de Kogel, W. Male fruit fly, Bactrocera tau (Diptera; Tephritidae) attractants from Elsholtzia pubescens Bth. Asian J. Plant Sci. 6(1), 181–183 (2007).

    Article  Google Scholar 

  • 59.

    Chen, Z. Y. et al. Insecticidal and repellent activity of essential oil from Amomum villosum Lour. and its main compounds against two stored-product insects. Int. J. Food Prop. 21(1), 2265–2275 (2018).

    CAS  Article  Google Scholar 

  • 60.

    Reisenman, C. E., Lei, H. & Guerenstein, P. G. Neuroethology of olfactory-guided behavior and its potential application in the control of harmful insects. Front. Physiol. 7, 271–271 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Raina, A. K., Bland, J. M. & Osbrink, W. Hydroquinone is not a phagostimulant for the Formosan subterranean termite. J. Chem. Ecol. 31(3), 509–517 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 62.

    Bagnères, A.-G. & Hanus, R. Communication and social regulation in termites. In Social Recognition in Invertebrates: The Knowns and the Unknowns (eds Aquiloni, L. & Tricarico, E.) 193–248 (Springer, Cham, 2015).

    Google Scholar 

  • 63.

    Alia Diyana, M. H., Appalasamy, S., Arumugam, N. & Boon, J. G. A study of a termite chemical defense fluid compound of Macrotermes carbonarius. IOP Conf. Ser. Earth Environ. Sci. https://doi.org/10.1088/1755-1315/269/1/012009 (2019).

    Article  Google Scholar 

  • 64.

    Environmental Protection Agency. Furanone. Prevention P A T S (National Center for Environmental Publications and Information, 1993).

  • 65.

    Igwe, O. U. & Udofia, D. E. Secondary metabolites of the cuticular abdominal glands of variegated grasshopper (Zonocerus variegatus L.). Int. J. Spectrosc. 2015, 1–6 (2015).

    Article  CAS  Google Scholar 

  • 66.

    Neoh, K. B., Yeap, B.-K., Tsunoda, K., Yoshimura, T. & Lee, C.-Y. Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses. PLoS ONE 7(4), 36375 (2012).

    ADS  Article  CAS  Google Scholar 

  • 67.

    Blassioli-Moraes, M. C., Laumann, R. A., Michereff, M. F. F. & Borges, M. Semiochemicals for integrated pest management. In Sustainable Agrochemistry: A Compendium of Technologies (ed. Vaz, S., Jr.) 85–112 (Springer, Cham, 2019).

    Google Scholar 

  • 68.

    de Melo, A. R. et al. Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotoxicol. Environ. Saf. 154, 1–5 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 69.

    Xie, Y., Wang, K., Huang, Q. & Lei, C. Evaluation toxicity of monoterpenes to subterranean termite, Reticulitermes chinensis Snyder. Ind. Crops Prod. 53, 163–166 (2014).

    CAS  Article  Google Scholar 

  • 70.

    Xie, Y. et al. Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of Syzgium aromaticum (clove). Ind. Crops Prod. 77, 780–786 (2015).

    CAS  Article  Google Scholar 

  • 71.

    Zhang, Z., Yang, T., Zhang, Y., Wang, L. & Xie, Y. Fumigant toxicity of monoterpenes against fruitfly, Drosophila melanogaster. Ind. Crops Prod. 81, 147–151 (2016).

    CAS  Article  Google Scholar 

  • 72.

    Silva, L. N. D. et al. The influence of fatty acid methyl esters (FAMEs) in the biochemistry and the Na+/K+-ATPase activity of Culex quinquefasciatus Larvae. J. Membr. Biol. 249(4), 459–467 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Rock magnetism uncrumples the Himalayas’ complex collision zone

    Scientists discover slimy microbes that may help keep coral reefs healthy