in

Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia)

  • 1.

    Kuwae, T. et al. Biofilm grazing in a higher vertebrate: The Western Sandpiper, Calidris mauri. Ecology 89, 599–606 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Góngora, E., Braune, B. M. & Elliott, K. H. Nitrogen and sulfur isotopes predict variation in mercury levels in Arctic seabird prey. Mar. Pollut. Bull. 135, 907–914 (2018).

    PubMed  Article  CAS  Google Scholar 

  • 3.

    Ben-Yosef, M., Aharon, Y., Jurkevitch, E. & Yuval, B. Give us the tools and we will do the job: Symbiotic bacteria affect olive fly fitness in a diet-dependent fashion. Proc. R. Soc. B Biol. Sci. 277, 1545–1552 (2010).

    CAS  Article  Google Scholar 

  • 4.

    Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation?. Trends Ecol. Evol. 31, 689–699 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Lapanje, A., Zrimec, A., Drobne, D. & Rupnik, M. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut. Environ. Pollut. 158, 3186–3193 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Lewis, W. B., Moore, F. R. & Wang, S. Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J. Avian Biol. 47, 659–668 (2016).

    Article  Google Scholar 

  • 7.

    Bolnick, D. I. et al. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol. Lett. 17, 979–987 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).

    Article  Google Scholar 

  • 10.

    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).

    MathSciNet  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Apajalahti, J. H. A., Kettunen, A., Bedford, M. R. & Holben, W. E. Percent G + C profiling accurately reveals diet-related differences in the gastrointestinal microbial community of broiler chickens. Appl. Environ. Microbiol. 67, 5656–5667 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Apajalahti, J. & Kettunen, A. Microbes of the chicken gastrointestinal tract. In Avian Gut Function in Health and Disease (ed. Perry, G. C.) 124–137 (CAB International, Wallingford, 2006).

    Google Scholar 

  • 13.

    Oakley, B. B. et al. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 360, 100–112 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Bangert, R. L., Ward, A. C. S., Stauber, E. H., Cho, B. R. & Widders, P. R. A survey of the aerobic bacteria in the feces of captive raptors. Avian Dis. 32, 53–62 (1988).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Soucek, Z. & Mushin, R. Gastrointestinal bacteria of certain Antarctic birds and mammals. Appl. Microbiol. 20, 561–566 (1970).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Mead, G. C., Griffiths, N. M., Impey, C. S. & Coplestone, J. C. Influence of diet on the intestinal microflora and meat flavour of intensively-reared broiler chickens. Br. Poult. Sci. 24, 261–272 (1983).

    Article  Google Scholar 

  • 17.

    Waldenström, J. et al. Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. Appl. Environ. Microbiol. 68, 5911–5917 (2002).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Waite, D. W. & Taylor, M. W. Exploring the avian gut microbiota: Current trends and future directions. Front. Microbiol. 6, 1–12 (2015).

    Article  Google Scholar 

  • 19.

    Maul, J. D., Gandhi, J. P. & Farris, J. L. Community-level physiological profiles of cloacal microbes in songbirds (order: Passeriformes): Variation due to host species, host diet, and habitat. Microb. Ecol. 50, 19–28 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Risely, A., Waite, D. W., Ujvari, B., Hoye, B. J. & Klaassen, M. Active migration is associated with specific and consistent changes to gut microbiota in Calidris shorebirds. J. Anim. Ecol. 87, 428–437 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Dewar, M. L. et al. Interspecific variations in the gastrointestinal microbiota in penguins. Microbiologyopen 2, 195–204 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Waite, D. W. & Taylor, M. W. Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Front. Microbiol. 5, 1–12 (2014).

    Article  Google Scholar 

  • 23.

    Teyssier, A. et al. Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612, 1276–1286 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Capunitan, D. C., Johnson, O., Terrill, R. S. & Hird, S. M. Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol. Ecol. 29, 829–847 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 26.

    Michel, A. J. et al. The gut of the finch: Uniqueness of the gut microbiome of the Galápagos vampire finch. Microbiome 6, 167 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Elliott, K. H., Woo, K. J. & Gaston, A. J. Specialization in murres: The story of eight specialists. Waterbirds 32, 491–506 (2009).

    Article  Google Scholar 

  • 28.

    Woo, K. J., Elliott, K. H., Davidson, M., Gaston, A. J. & Davoren, G. K. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. J. Anim. Ecol. 77, 1082–1091 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Elliott, K. H., Gaston, A. J. & Crump, D. Sex-specific behavior by a monomorphic seabird represents risk partitioning. Behav. Ecol. 21, 1024–1032 (2010).

    Article  Google Scholar 

  • 30.

    Paredes, R., Jones, I. & Boness, D. Parental roles of male and female thick-billed murres and razorbills at the Gannet Islands, Labrador. Behaviour 143, 451–481 (2006).

    Article  Google Scholar 

  • 31.

    Atwell, L., Hobson, K. A. & Welch, H. E. Biomagnification and bioaccumulation of mercury in an arctic marine food web: Insights from stable nitrogen isotope analysis. Can. J. Fish. Aquat. Sci. 55, 1114–1121 (1998).

    CAS  Article  Google Scholar 

  • 32.

    Carr, M. K. et al. Stable sulfur isotopes identify habitat-specific foraging and mercury exposure in a highly mobile fish community. Sci. Total Environ. 586, 338–346 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 33.

    Peterson, B. J. & Fry, B. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18, 293–320 (1987).

    Article  Google Scholar 

  • 34.

    Song, S. J. et al. Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems 1, e00021-e116 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Grond, K., Sandercock, B. K., Jumpponen, A. & Zeglin, L. H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 49, e01788 (2018).

    Article  Google Scholar 

  • 36.

    Lawson, P. A., Collins, M. D., Falsen, E. & Foster, G. Catellicoccus marimammalium gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus-shaped bacterium from porpoise and grey seal. Int. J. Syst. Evol. Microbiol. 56, 429–432 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Sinigalliano, C. D. et al. Multi-laboratory evaluations of the performance of Catellicoccus marimammalium PCR assays developed to target gull fecal sources. Water Res. 47, 6883–6896 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Ryu, H. et al. Comparison of gull feces-specific assays targeting the 16S rRNA genes of Catellicoccus marimammalium and Streptococcus spp. Appl. Environ. Microbiol. 78, 1909–1916 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Koskey, A. M., Fisher, J. C., Traudt, M. F., Newton, R. J. & McLellan, S. L. Analysis of the gull fecal microbial community reveals the dominance of Catellicoccus marimammalium in relation to culturable enterococci. Appl. Environ. Microbiol. 80, 757–765 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Lu, J., Santo Domingo, J. W., Lamendella, R., Edge, T. & Hill, S. Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl. Environ. Microbiol. 74, 3969–3976 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Benskin, C. M. H., Rhodes, G., Pickup, R. W., Wilson, K. & Hartley, I. R. Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol. Ecol. 19, 5531–5544 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Kreisinger, J. et al. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 8, 1–19 (2017).

    Article  Google Scholar 

  • 43.

    Grond, K., Ryu, H., Baker, A. J., Santo Domingo, J. W. & Buehler, D. M. Gastro-intestinal microbiota of two migratory shorebird species during spring migration staging in Delaware Bay, USA. J. Ornithol. 155, 969–977 (2014).

    Article  Google Scholar 

  • 44.

    Santos, S. S. et al. Diversity of cloacal microbial community in migratory shorebirds that use the Tagus estuary as stopover habitat and their potential to harbor and disperse pathogenic microorganisms. FEMS Microbiol. Ecol. 82, 63–74 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Laviad-Shitrit, S., Izhaki, I., Lalzar, M. & Halpern, M. Comparative analysis of intestine microbiota of four wild waterbird species. Front. Microbiol. 10, 1–13 (2019).

    Article  Google Scholar 

  • 46.

    Weigand, M. R., Ryu, H., Bozcek, L., Konstantinidis, K. T. & Santo Domingo, J. W. Draft genome sequence of Catellicoccus marimammalium, a novel species commonly found in gull feces. Genome Announc. 1, 12–13 (2013).

    Article  Google Scholar 

  • 47.

    Dewar, M. L. et al. Influence of fasting during moult on the faecal microbiota of penguins. PLoS ONE 9, e99996 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 48.

    Dewar, M. L., Arnould, J. P. Y., Krause, L., Dann, P. & Smith, S. C. Interspecific variations in the faecal microbiota of Procellariiform seabirds. FEMS Microbiol. Ecol. 89, 47–55 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Roggenbuck, M. et al. The microbiome of New World vultures. Nat. Commun. 5, 5498 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Potrykus, J., White, R. L. & Bearne, S. L. Proteomic investigation of amino acid catabolism in the indigenous gut anaerobe Fusobacterium varium. Proteomics 8, 2691–2703 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Tsuchiya, C., Sakata, T. & Sugita, H. Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Lett. Appl. Microbiol. 46, 071018031740002–000 (2007).

    Article  CAS  Google Scholar 

  • 52.

    Tegtmeier, D., Riese, C., Geissinger, O., Radek, R. & Brune, A. Breznakia blatticola gen. nov. sp. nov. and Breznakia pachnodae sp. nov., two fermenting bacteria isolated from insect guts, and emended description of the family Erysipelotrichaceae. Syst. Appl. Microbiol. 39, 319–329 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Vandamme, P. et al. Ornithobacterium rhinotracheale gen. nov., sp. nov. isolated from the avian respiratory tract. Int. J. Syst. Bacteriol. 44, 24–37 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Cerdà-Cuéllar, M. et al. Do humans spread zoonotic enteric bacteria in Antarctica?. Sci. Total Environ. 654, 190–196 (2019).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 55.

    Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).

    Article  Google Scholar 

  • 56.

    Lott, C. A., Meehan, T. D. & Heath, J. A. Estimating the latitudinal origins of migratory birds using hydrogen and sulfur stable isotopes in feathers: Influence of marine prey base. Oecologia 134, 505–510 (2003).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Góngora, E., Elliott, K. & Whyte, L. Dataset from Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Mendeley Data v4, (2020).

  • 58.

    Eriksson, P., Mourkas, E., González-Acuna, D., Olsen, B. & Ellström, P. Evaluation and optimization of microbial DNA extraction from fecal samples of wild Antarctic bird species. Infect. Ecol. Epidemiol. 7, 1386536 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 62.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 65.

    Braune, B. M., Gaston, A. J., Hobson, K. A., Gilchrist, H. G. & Mallory, M. L. Changes in food web structure alter trends of mercury uptake at two seabird colonies in the Canadian arctic. Environ. Sci. Technol. 48, 13246–13252 (2014).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 66.

    Callahan, B. J., Sankaran, K., Fukuyama, J. A., McMurdie, P. J. & Holmes, S. P. Bioconductor workflow for microbiome data analysis: From raw reads to community analyses. F1000Research 5, 1492 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 67.

    Bokulich, N. A. et al. q2-longitudinal: Longitudinal and paired-sample analyses of microbiome data. mSystems 3, 1–9 (2018).

    Article  Google Scholar 

  • 68.

    Wilcoxon, F. Individual comparisons by Ranking methods. Biometrics Bull. 1, 80 (1945).

    Article  Google Scholar 

  • 69.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).

    Google Scholar 

  • 70.

    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).

    Article  Google Scholar 

  • 72.

    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication (University of Illinois Press, Champaign, 1949).

    Google Scholar 

  • 73.

    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    MATH  Article  Google Scholar 

  • 74.

    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet  PubMed  PubMed Central  MATH  Article  Google Scholar 

  • 75.

    Legendre, P. & Legendre, L. Ordination in reduced space. In Numerical Ecology Vol. 24 (eds Legendre, P. & Legendre, L.) 425–520 (Elsevier, Amsterdam, 2012).

    Google Scholar 

  • 76.

    Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: A tool for visualizing high-throughput microbial community data. Gigascience 2, 16 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Vázquez-Baeza, Y. et al. Bringing the dynamic microbiome to life with animations. Cell Host Microbe 21, 7–10 (2017).

    PubMed  Article  CAS  Google Scholar 

  • 78.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 80.

    McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 81.

    Mann, H. B. & Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18, 50–60 (1947).

    MathSciNet  MATH  Article  Google Scholar 

  • 82.

    Bartoń, K. MuMIn: Multi-Model Inference. (2019).


  • Source: Ecology - nature.com

    Stoichiometric niche, nutrient partitioning and resource allocation in a solitary bee are sex-specific and phosphorous is allocated mainly to the cocoon

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92