in

Amynthas corticis genome reveals molecular mechanisms behind global distribution

  • 1.

    Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 2.

    Darwin, C. The Formation of Vegetable Mould Through the Action of Worms. (Cambridge Univ. Press, 1881).

  • 3.

    Vila, M. B. C. & Pysek, P. How well do we understand the impacts of alien species on ecosystem services? A pan‐European, cross‐taxa assessment. Front. Ecol. Environ. 8, 135–144 (2010).

    Article  Google Scholar 

  • 4.

    Callaham, M. A. Pandora’s box contained bait: the global problem of introduced earthworms. Annu. Rev. Ecol. Evol. Syst. 39, 593–613 (2008).

    Article  Google Scholar 

  • 5.

    Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).

    Article  Google Scholar 

  • 6.

    Qiu, J. & Turner, M. G. Effects of non-native Asian earthworm invasion on temperate forest and prairie soils in the Midwestern US. Biol. Invasions 19, 73–88 (2017).

    Article  Google Scholar 

  • 7.

    Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).

    PubMed  Article  Google Scholar 

  • 8.

    Viktorov, A. G. Diversity of polyploid races in the family Lumbricidae. Soil Biol. Biochem. 29, 217–221 (1997).

    Article  Google Scholar 

  • 9.

    Terhivuo, J. & Saura, A. Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol. Invasions 8, 1205–1218 (2006).

    Article  Google Scholar 

  • 10.

    Garbar, A. V. & Vlasenko, R. P. Karyotypes of three species of the genus Aporrectodea Örley (Oligochaeta: Lumbricidae) from the Ukraine. Comp. Cytogenet. 1, 59–62 (2007).

    Google Scholar 

  • 11.

    Bakhtadze, N. G., Bakhtadze, G. I. & Kvavadze, E. S. The chromosome numbers of Georgian earthworms (Oligochaeta: Lumbricidae). Comp. Cytogenet. 2, 79–83 (2008).

    Google Scholar 

  • 12.

    Hegarty, M. J. & Hiscock, S. J. Genomic clues to the evolutionary success of polyploid plants. Curr. Biol. 18, R435–R444 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Finigan, P., Tanurdzic, M. & Martienssen, R. A. in Polyploidy and Genome Evolution (Springer, 2012).

  • 14.

    Sailer, C., Schmid, B. & Grossniklaus, U. Apomixis allows the transgenerational fixation of phenotypes in hybrid plants. Curr. Biol. 26, 331–337 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Novo, M. et al. Multiple introductions and environmental factors affecting the establishment of invasive species on a volcanic island. Soil Biol. Biochem. 85, 89–100 (2015).

    CAS  Article  Google Scholar 

  • 16.

    Kang, M. M. Earthworm genome assembly protocol. Zenodo https://doi.org/10.5281/zenodo.4288562 (2020).

    Article  Google Scholar 

  • 17.

    Lim, J. Y., Yoon, J. & Hovde, C. J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 20, 5–14 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    van Elsas, J. D., Semenov, A. V., Costa, R. & Trevors, J. T. Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J. 5, 173–183 (2011).

    PubMed  Article  Google Scholar 

  • 19.

    Lassegues, M., Milochau, A., Doignon, F., Du Pasquier, L. & Valembois, P. Sequence and expression of an Eisenia-fetida-derived cDNA clone that encodes the 40-kDa fetidin antibacterial protein. Eur. J. Biochem. 246, 756–762 (1997).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Rorat, A., Vandenbulcke, F., Galuszka, A., Klimek, B. & Plytycz, B. Protective role of metallothionein during regeneration in Eisenia andrei exposed to cadmium. Comp. Biochem Physiol. 203, 39–50 (2017).

    CAS  Google Scholar 

  • 21.

    Bilej, M. et al. Distinct carbohydrate recognition domains of an invertebrate defense molecule recognize Gram-negative and Gram-positive bacteria. J. Biol. Chem. 276, 45840–45847 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Cho, J. H., Park, C. B., Yoon, Y. G., Kim, S. C. & Lumbricin, I. A novel proline-rich antimicrobial peptide from the earthworm: purification, cDNA cloning and molecular characterization. Biochim. Biophys. Acta 1408, 67–76 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Skanta, F., Prochazkova, P., Roubalova, R., Dvorak, J. & Bilej, M. LBP/BPI homologue in Eisenia andrei earthworms. Dev. Comp. Immunol. 54, 1–6 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Joskova, R., Silerova, M., Prochazkova, P. & Bilej, M. Identification and cloning of an invertebrate-type lysozyme from Eisenia andrei. Dev. Comp. Immunol. 33, 932–938 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Prochazkova, P. et al. Developmental and immune role of a novel multiple cysteine cluster TLR from Eisenia andrei earthworms. Front. Immunol. 10, 1277 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Skanta, F., Roubalova, R., Dvorak, J., Prochazkova, P. & Bilej, M. Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev. Comp. Immunol. 41, 694–702 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Wang, J. et al. Transcriptional responses of earthworm (Eisenia fetida) exposed to naphthenic acids in soil. Environ. Pollut. 204, 264–270 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Silerova, M. et al. Characterization, molecular cloning and localization of calreticulin in Eisenia fetida earthworms. Gene 397, 169–177 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 29.

    Li, Y., Zhao, C., Lu, X., Ai, X. & Qiu, J. Identification of a cytochrome P450 gene in the earthworm Eisenia fetida and its mRNA expression under enrofloxacin stress. Ecotoxicol. Environ. Saf. 150, 70–75 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Roubalova, R. et al. The effect of dibenzo-p-dioxin- and dibenzofuran-contaminated soil on the earthworm Eisenia andrei. Environ. Pollut. 193, 22–28 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 31.

    Weiss, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: a statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 122 (2018).

    Article  CAS  Google Scholar 

  • 32.

    Pendleton, M. et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods 12, 780–786 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Kokot, M., Dlugosz, M. & Deorowicz, S. KMC 3: counting and manipulating k-mer statistics. Bioinformatics 33, 2759–2761 (2017).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Zwarycz, A. S., Nossa, C. W., Putnam, N. H. & Ryan, J. F. Timing and scope of genomic expansion within Annelida: evidence from homeoboxes in the genome of the earthworm Eisenia fetida. Genome Biol. Evol. 8, 271–281 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Simakov, O. et al. Insights into bilaterian evolution from three spiralian genomes. Nature 493, 526–531 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 36.

    Horn, K. M. et al. Na(+) /K(+) -ATPase gene duplications in clitellate annelids are associated with freshwater colonization. J. Evol. Biol. 32, 580–591 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Horn, K. M. & Anderson, F. E. Spiralian genomes reveal gene family expansions associated with adaptation to freshwater. J. Mol. Evol. 88, 463–472 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Schreiber, F., Patricio, M., Muffato, M., Pignatelli, M. & Bateman, A. TreeFam v9: a new website, more species and orthology-on-the-fly. Nucleic Acids Res. 42, D922–D925 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 40.

    Ruan, J. et al. TreeFam: 2008 update. Nucleic Acids Res. 36, D735–D740 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Han, M. V., Thomas, G. W. C., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Mol. Biol. Evol. 30, 1987–1997 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Hahn, M. W., De Bie, T., Stajich, J. E., Nguyen, C. & Cristianini, N. Estimating the tempo and mode of gene family evolution from comparative genomic data. Genome Res. 15, 1153–1160 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    The Gene Ontology, C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res. 47, D330–D338 (2019).

    Article  CAS  Google Scholar 

  • 45.

    Klopfenstein, D. V. et al. GOATOOLS: a Python library for gene ontology analyses. Sci. Rep. 8, 10872 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Shao, Y. et al. Genome and single-cell RNA-sequencing of the earthworm Eisenia andrei identifies cellular mechanisms underlying regeneration. Nat. Commun. 11, 2656 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Liu, X., Sun, Z., Chong, W., Sun, Z. & He, C. Growth and stress responses of the earthworm Eisenia fetida to Escherichia coli O157:H7 in an artificial soil. Micro. Pathog. 46, 266–272 (2009).

    Article  CAS  Google Scholar 

  • 48.

    Wang, X., Chang, L. & Sun, Z. Differential expression of genes in the earthworm Eisenia fetida following exposure to Escherichia coli O157:H7. Dev. Comp. Immunol. 35, 525–529 (2011).

    PubMed  Article  CAS  Google Scholar 

  • 49.

    Wang, X., Chang, L., Sun, Z. & Zhang, Y. Comparative proteomic analysis of differentially expressed proteins in the earthworm Eisenia fetida during Escherichia coli O157:H7 stress. J. Proteome Res. 9, 6547–6560 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Wang, X., Li, X. & Sun, Z. iTRAQ-based quantitative proteomic analysis of the earthworm Eisenia fetida response to Escherichia coli O157:H7. Ecotoxicol. Environ. Saf. 160, 60–66 (2018).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 51.

    Zhang, Y. et al. PCR-DGGE analysis of earthworm gut bacteria diversity in stress of Escherichia coli O157:H7. Adv. Biosci. Biotechnol. 4, 437–441 (2013).

    Article  CAS  Google Scholar 

  • 52.

    Fischer, D. S., Theis, F. J. & Yosef, N. Impulse model-based differential expression analysis of time course sequencing data. Nucleic Acids Res. 46, e119 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 53.

    Sander, J., Schultze, J. L. & Yosef, N. ImpulseDE: detection of differentially expressed genes in time series data using impulse models. Bioinformatics 33, 757–759 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 54.

    Cooper, E. L. Earthworm immunity. Prog. Mol. Subcell. Biol. 15, 10–45 (1996).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Bilej, M., Prochazkova, P., Silerova, M. & Joskova, R. Earthworm immunity. Adv. Exp. Med Biol. 708, 66–79 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 58.

    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).

    Article  CAS  Google Scholar 

  • 59.

    Sapountzis, P. et al. The enterobacterium Trabulsiella odontotermitis presents novel adaptations related to its association with fungus-growing termites. Appl. Environ. Microbiol. 81, 6577–6588 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Kotak, M. et al. Complete genome sequence of the Opitutaceae bacterium strain TAV5, a potential facultative methylotroph of the wood-feeding termite Reticulitermes flavipes. Genome Announc. https://doi.org/10.1128/genomeA.00060-15 (2015).

  • 61.

    Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28, 721–726 (1975).

    CAS  Article  Google Scholar 

  • 62.

    Jeske, O., Jogler, M., Petersen, J., Sikorski, J. & Jogler, C. From genome mining to phenotypic microarrays: planctomycetes as source for novel bioactive molecules. Antonie Van. Leeuwenhoek 104, 551–567 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 63.

    Jeske, O. et al. Developing techniques for the utilization of planctomycetes as producers of bioactive molecules. Front. Microbiol. 7, 1242 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Kolton, M. et al. Draft genome sequence of Flavobacterium sp. strain F52, isolated from the rhizosphere of bell pepper (Capsicum annuum L. cv. Maccabi). J. Bacteriol. 194, 5462–5463 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 65.

    Kolton, M. et al. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl. Environ. Microbiol. 77, 4924–4930 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Sang, M. K. & Kim, K. D. The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113, 383–398 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 67.

    Youssef, N. H., Blainey, P. C., Quake, S. R. & Elshahed, M. S. Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma). Appl. Environ. Microbiol. 77, 7804–7814 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 68.

    Havarstein, L. S., Diep, D. B. & Nes, I. F. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 16, 229–240 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 69.

    Weon, H. Y. et al. Rubellimicrobium aerolatum sp. nov., isolated from an air sample in Korea. Int. J. Syst. Evol. Microbiol. 59, 406–410 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Saha, P. & Chakrabarti, T. Aeromonas sharmana sp. nov., isolated from a warm spring. Int. J. Syst. Evol. Microbiol. 56, 1905–1909 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 71.

    Corby-Harris, V. et al. Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl. Environ. Microbiol. 80, 7460–7472 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 72.

    Ryu, J. H. et al. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319, 777–782 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 73.

    Cui, H. et al. Bacterial community shaped by heavy metals and contributing to health risks in cornfields. Ecotoxicol. Environ. Saf. 166, 259–269 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 74.

    Han, J. I. et al. Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J. Bacteriol. 193, 1183–1190 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Belimov, A. A. et al. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. N. Phytol. 181, 413–423 (2009).

    CAS  Article  Google Scholar 

  • 76.

    Schmalenberger, A. et al. The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environ. Microbiol. 10, 1486–1500 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 77.

    Yurgel, S. N., Douglas, G. M., Dusault, A., Percival, D. & Langille, M. G. I. Dissecting community structure in wild blueberry root and soil microbiome. Front. Microbiol. 9, 1187 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 78.

    Zadel, U. et al. Changes induced by heavy metals in the plant-associated microbiome of Miscanthus x giganteus. Sci. Total Environ. 711, 134433 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 79.

    Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 80.

    Sturzenbaum, S. R., Andre, J., Kille, P. & Morgan, A. J. Earthworm genomes, genes and proteins: the (re)discovery of Darwin’s worms. Proc. Biol. Sci. 276, 789–797 (2009).

    CAS  PubMed  Google Scholar 

  • 81.

    Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 82.

    Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 84.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 85.

    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 86.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 87.

    Burton, J. N. et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 31, 1119–1125 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 88.

    English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7, e47768 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 89.

    Chaisson, M. J. & Tesler, G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinform. 13, 238 (2012).

    CAS  Article  Google Scholar 

  • 90.

    Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 91.

    Nishimura, O., Hara, Y. & Kuraku, S. gVolante for standardizing completeness assessment of genome and transcriptome assemblies. Bioinformatics 33, 3635–3637 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 92.

    Liu, B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. arXiv 1308, 2012v1 (2019).

    Google Scholar 

  • 93.

    Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 94.

    Rio, D. C., Ares, M., Hannon, G. J. & Nilsen, T. W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc. 2010, t5439 (2010).

    Article  Google Scholar 

  • 95.

    Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinform. Chapter 4, Unit 4 10, (2004).

  • 96.

    Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 98.

    Kalvari, I. et al. Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 46, D335–D342 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 99.

    Kalvari, I. et al. Non-coding RNA analysis using the Rfam database. Curr. Protoc. Bioinform. 62, e51 (2018).

    Article  CAS  Google Scholar 

  • 100.

    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Apweiler, R. et al. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res. 32, D115–D119 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 102.

    Slater, G. S. & Birney, E. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 6, 31 (2005).

    Article  CAS  Google Scholar 

  • 103.

    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 104.

    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 105.

    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 106.

    UniProt, C. UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212 (2015).

    Article  CAS  Google Scholar 

  • 107.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 108.

    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 109.

    Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A. C. & Kanehisa, M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, W182–W185 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 110.

    Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 111.

    Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 112.

    Howe, K. L., Bolt, B. J., Shafie, M., Kersey, P. & Berriman, M. WormBase ParaSite – a comprehensive resource for helminth genomics. Mol. Biochem. Parasitol. 215, 2–10 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 113.

    Barrett, T. et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res. 40, D57–D63 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 114.

    Howe, K. L. et al. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 44, D774–D780 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 115.

    Eddy, S. R. Multiple alignment using hidden Markov models. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 114–120 (1995).

  • 116.

    Etherington, G. J., Ramirez-Gonzalez, R. H. & MacLean, D. bio-samtools 2: a package for analysis and visualization of sequence and alignment data with SAMtools in Ruby. Bioinformatics 31, 2565–2567 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 117.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 118.

    Kuck, P. & Meusemann, K. FASconCAT: convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118 (2010).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 119.

    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 120.

    Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 121.

    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).

    CAS  Article  Google Scholar 

  • 122.

    De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).

    Article  CAS  Google Scholar 

  • 123.

    Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 124.

    Pedersen, T. L. MSGFplus: an interface between R and MS-GF+. R package version 1.18.0 (2019).

  • 125.

    Gatto, L. & Christoforou, A. Using R and Bioconductor for proteomics data analysis. Biochim. et. Biophys. Acta 1844, 42–51 (2014).

    CAS  Article  Google Scholar 

  • 126.

    Magoc, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 127.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 128.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 129.

    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 130.

    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 131.

    National Genomics Data Center, M. & Partners. Database resources of the National Genomics Data Center in 2020. Nucleic Acids Res. 48, D24–D33 (2020).


  • Source: Ecology - nature.com

    MIT convenes influential industry leaders in the fight against climate change

    How will Covid-19 ultimately impact climate change?