in

Genetic structure of a remnant Acropora cervicornis population

  • 1.

    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 1–8 (2016).

    Article  CAS  Google Scholar 

  • 2.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Mumby, P. J. Stratifying herbivore fisheries by habitat to avoid ecosystem overfishing of coral reefs. Fish Fish. 17, 266–278 (2016).

    Article  Google Scholar 

  • 5.

    Silbiger, N. J. et al. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B Biol. Sci. 285, 1–9 (2018).

    Google Scholar 

  • 6.

    Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a caribbean coral reef. Science (80-. ). 265, 1547–1551 (1994).

  • 7.

    Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Spalding, M. D. & Brown, B. E. Warm-water coral reefs and climate change. Science (80-. ). 350, 769–771 (2015).

  • 9.

    Rogers, A., Blanchard, J. L. & Mumby, P. J. Fisheries productivity under progressive coral reef degradation. J. Appl. Ecol. 55, 1041–1049 (2017).

    Article  Google Scholar 

  • 10.

    Weijerman, M. et al. Evaluating management strategies to optimise coral reef ecosystem services. J. Appl. Ecol. 55, 1823–1833 (2017).

    Article  Google Scholar 

  • 11.

    Jackson, J., Donovan, M., Cramer, K., Lam, V. & (editors). Status and Trends of Caribbean Coral Reefs: 1970–2012. (2014).

  • 12.

    Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in caribbean corals. Science (80-. ). 301, 958–961 (2003).

  • 13.

    Aronson, R., Bruckner, A., Moore, J., Precht, B. & Weil, E. Acropora palmata: The IUCN Red List of Threatened Species 2008: e.T133006A3536699. (2008). https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133006A3536699.en.

  • 14.

    Aronson, R., Bruckner, A., Moore, J., Precht, B. & Weil, E. Acropora cervicornis. The IUCN Red List of Threatened Species 2008: e.T133381A3716457. (2008). https://doi.org/10.2305/IUCN.UK.2008.RLTS.T133381A3716457.en.

  • 15.

    Porto-Hannes, I. et al. Population structure of the corals Orbicella faveolata and Acropora palmata in the Mesoamerican Barrier Reef System with comparisons over Caribbean basin-wide spatial scale. Mar. Biol. 162, 81–98 (2015).

    CAS  Article  Google Scholar 

  • 16.

    Keck, J., Houston, R. S., Purkis, S. & Riegl, B. M. Unexpectedly high cover of Acropora cervicornis on offshore reefs in Roatan (Honduras). Coral Reefs 24, 509 (2005).

    ADS  Article  Google Scholar 

  • 17.

    Japaud, A., Bouchon, C., Manceau, J.-L. & Fauvelot, C. High clonality in Acropora palmata and Acropora cervicornis populations of Guadeloupe French Lesser Antilles. Mar. Freshw. Res. 66(847), 851 (2015).

    Google Scholar 

  • 18.

    Baums, I. B., Miller, M. W. & Hellberg, M. E. Regionally isolated populations of an imperiled Caribbean coral Acropora palmata. Mol. Ecol. 14(1377), 1390 (2005).

    Google Scholar 

  • 19.

    Lasker, H. R. & Coffroth, M. A. Responses of clonal reef taxa to environmental change. Am. Zool. 39, 92–103 (1999).

    Article  Google Scholar 

  • 20.

    Honnay, O. & Bossuyt, B. Prolonged clonal growth: escape route or route to extinction?. Oikos 108, 427–432 (2005).

    Article  Google Scholar 

  • 21.

    Teo, A. & Todd, P. A. Simulating the effects of colony density and intercolonial distance on fertilisation success in broadcast spawning scleractinian corals. Coral Reefs 37, 891–900 (2018).

    ADS  Article  Google Scholar 

  • 22.

    Baums, I. B., Miller, M. W. & Hellberg, M. E. Geographic variation in clonal structure in a reef-building Caribbean coral Acropora palmata. Ecol. Monogr. 76(503), 519 (2006).

    Google Scholar 

  • 23.

    Drury, C., Paris, C. B., Vassiliki, H. K. & Lirman, D. Dispersal capacity and genetic relatedness in Acropora cervicornis on the Florida Reef Tract. Coral Reefs 37, 585–596 (2018).

    ADS  Article  Google Scholar 

  • 24.

    Reusch, T. B. H., Ehlers, A., Hämmerli, A. & Worm, B. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proc. Natl. Acad. Sci. USA 102, 2826–2831 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Booth, R. E. & Grime, J. P. Effects of genetic impoverishment on plant community diversity. J. Ecol. 91, 721–730 (2003).

    Article  Google Scholar 

  • 26.

    Drury, C., Greer, J. B., Baums, I., Gintert, B. & Lirman, D. Clonal diversity impacts coral cover in Acropora cervicornis thickets: Potential relationships between density, growth, and polymorphisms. Ecol. Evol. 9, 4518–4531 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Neigel, J. E. & Avise, J. C. Clonal diversity and population structure in a reef-building coral, acropora cervicornis: self-recognition analysis and demographic interpretation. Evolution (N. Y). 37, 437–453 (1983).

  • 28.

    Hughes, T. P. et al. Coral reefs in the anthropocene. Nature 546, 82–90 (2017).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Evensen, N., Doropoulos, C., Morrow, K., Motti, C. & Mumby, P. Inhibition of coral settlement at multiple spatial scales by a pervasive algal competitor. Mar. Ecol. Prog. Ser. 612, 29–42 (2019).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Goreau, T. J. & Hilbertz, W. Marine ecosystems restoration: costs and benefits for coral reefs. World Resour. Rev. 17, 375–409 (2005).

    Google Scholar 

  • 31.

    Vollmer, S. V. & Kline, D. I. Natural disease resistance in threatened staghorn corals. PLoS ONE 3, 1–5 (2008).

    Article  CAS  Google Scholar 

  • 32.

    Baums, I. B. A restoration genetics guide for coral reef conservation. Mol. Ecol. 17, 2796–2811 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Schopmeyer, S. A. et al. In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor. Ecol. 20, 696–703 (2011).

    Article  Google Scholar 

  • 34.

    Young, C. N., Schopmeyer, S. A. & Lirman, D. A review of reef restoration and coral propogation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).

    Article  Google Scholar 

  • 35.

    ICF. Instituto de Conservacion Forestal. Declaracion de Banco Cordelia Sitio de Importancia para la Vida Silvestre. Gaceta No. 32,816, 10 Mayo Del 2012. Acuerdo No. 021–2012. (2012).

  • 36.

    Riegl, B., Purkis, S. J., Keck, J. & Rowlands, G. P. Monitored and modeled coral population dynamics and the refuge concept. Mar. Pollut. Bull. 58, 24–38 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 37.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020). https://www.R-project.org/.

  • 38.

    Soong, K. & Lang, J. C. Reproductive integration in reef corals. Biol. Bull. 183, 418–431 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Baums, I. B., Hughes, C. R. & Hellberg, M. E. Mendelian microsatellite loci for the Caribbean coral Acropora palmata. Mar. Ecol. Ser. 288, 115–127 (2005).

    CAS  Article  Google Scholar 

  • 40.

    Baums, I. B., Devlin-Durante, K., Brown, L. & Pinzon, J. H. Nine novel, ploymorphic microsatellite markers for the study of threatened caribbean acroporid corals. Mol. Ecol. Resour. 9, 1155–1158 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Alberto, F. MsatAllele-1.0: An R package to visualize the binning of microsatellite alleles. J. Hered. 100, 394–397 (2009).

  • 42.

    Meirmans, P. G. & Van Tienderen, P. H. GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).

    Article  Google Scholar 

  • 43.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).

  • 44.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).

  • 46.

    Oksanen, J. et al. The Vegan Package. (2007).

  • 47.

    Vollmer, S. V. & Palumbi, S. R. Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs. J. Hered. 98, 40–50 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Van Woesik, R., Lacharmoise, F. & Köksal, S. Annual cycles of solar insolation predict spawning times of Caribbean corals. Ecol. Lett. 9, 390–398 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Fogarty, N. D., Vollmer, S. V. & Levitan, D. R. Weak prezygotic isolating mechanisms in threatened caribbean Acropora corals. PLoS One 7, (2012).

  • 50.

    Rodríguez-Martínez, R. E., Banaszak, A. T., McField, M. D., Beltrán-Torres, A. U. & Álvarez-Filip, L. Assessment of Acropora palmata in the mesoamerican reef system. PLoS ONE 9, 1–7 (2014).

    Google Scholar 

  • 51.

    Aronson, J. & Alexander, S. Ecosystem restoration is now a global priority: time to roll up our sleeves. Restor. Ecol. 21, 293–296 (2013).

    Article  Google Scholar 

  • 52.

    Perring, M. P. et al. Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere 6, 480–493 (2015).

    Article  Google Scholar 

  • 53.

    Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 4, e2597 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, 1–24 (2020).

    Article  CAS  Google Scholar 

  • 55.

    Mijangos, J. L., Pacioni, C., Spencer, P. B. S. & Craig, M. D. Contribution of genetics to ecological restoration. Mol. Ecol. 24, 22–37 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 56.

    Ladd, M. C., Miller, M. W., Hunt, J. H., Sharp, W. C. & Burkepile, D. E. Harnessing ecological processes to facilitate coral restoration. Front. Ecol. Environ. 16, 239–247 (2018).

    Article  Google Scholar 

  • 57.

    Granado, R., Neta, L. C. P., Nunes-Freitas, A. F., Voloch, C. M. & Lira, C. F. Assessing genetic diversity after mangrove restoration in Brazil: Why is it so important? Diversity 10, (2018).

  • 58.

    Johnson, M. E. et al. Caribbean Acropora Restoration Guide: Best Practices for Propagation and Population Enhancement. (2011).

  • 59.

    Bland, L. M. et al. Using multiple lines of evidence to assess the risk of ecosystem collapse. Proc. R. Soc. B Biol. Sci. 284, 1–10 (2017).

    Google Scholar 

  • 60.

    ICF. Plan de Gestión para el Manejo del Sitio de Importancia para la Vida Silvestre Banco Cordelia el Parque nacional Marino de Islas de la Bahia. Inst. Nac. Conserv. y Desarro. For. Areas Protegidas y Vida Silv. 111 (2013).

  • 61.

    Mcleod, E. et al. The future of resilience-based management in coral reef ecosystems. J. Environ. Manage. 233, 291–301 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Crouzeilles, R. et al. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 3, 1–8 (2017).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Nickel excess affects phenology and reproductive attributes of Asterella wallichiana and Plagiochasma appendiculatum growing in natural habitats

    Reductions in CFC-11 emissions put ozone recovery back on track