in

Healthy herds in the phytoplankton: the benefit of selective parasitism

  • 1.

    Slobodkin LB. Prudent predation does not require group selection. Am Nat. 1974;108:665–78.

    Article  Google Scholar 

  • 2.

    Williams PD. Unhealthy herds: some epidemiological consequences of host heterogeneity in predator-host-parasite systems. J Theor Biol. 2008;253:500–7.

    Article  Google Scholar 

  • 3.

    Packer C, Holt RD, Hudson PJ, Lafferty KD, Dobson AP. Keeping the herds healthy and alert: Implications of predator control for infectious disease. Ecol Lett. 2003;6:797–802.

    Article  Google Scholar 

  • 4.

    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science 2015;348:1262073.

    Article  Google Scholar 

  • 5.

    Skovgaard A. Dirty tricks in the plankton: Diversity and role of marine parasitic protists. Acta Protozool. 2014;53:51–62.

    Google Scholar 

  • 6.

    Jephcott TG, Sime-Ngando T, Gleason FH, Macarthur DJ. Host-parasite interactions in food webs: Diversity, stability, and coevolution. Food Webs. 2016;6:1–8.

    Article  Google Scholar 

  • 7.

    Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob Biogeochem Cycles. 1995;9:359–72.

    CAS  Article  Google Scholar 

  • 8.

    Timmermans KR, Veldhuis MJ, Brussaard CP. Cell death in three marine diatom species in response to different irradiance levels, silicate, or iron concentrations. Aquat Micro Ecol. 2007;46:253–61.

    Article  Google Scholar 

  • 9.

    Pinto E, Van Nieuwerburgh L, De Barros MP, Pedersén M, Colepicolo P, Snoeijs P. Density-dependent patterns of thiamine and pigment production in the diatom Nitzschia microcephala. Phytochemistry. 2003;63:155–63.

    CAS  Article  Google Scholar 

  • 10.

    Manoylov KM. Intra- and interspecific competition for nutrients and light in diatom cultures. J Freshw Ecol. 2009;24:145–57.

    Article  Google Scholar 

  • 11.

    Houston DC, Cooper JE. The digestive tract of the whiteback griffon vulture and its role in disease transmission among wild ungulates. J Wildl Dis. 1975;11:306–13.

    CAS  Article  Google Scholar 

  • 12.

    Schaller G. The Serengeti lion: a study of predator-prey relations. London: University of Chicago Press; 1972.

  • 13.

    Krumm CE, Conner MM, Hobbs NT, Hunter DO, Miller MW. Mountain lions prey selectively on prion-infected mule deer. Biol Lett. 2010;6:209–11.

    Article  Google Scholar 

  • 14.

    Pole A, Gordon IJ, Gorman ML, MacAskill M. Prey selection by African wild dogs (Lycaon pictus) in southern Zimbabwe. J Zool. 2004;262:207–15.

    Article  Google Scholar 

  • 15.

    Husseman JS, Murray DL, Power G, Mack C, Wenger CR, Quigley H. Assessing differential prey selection patterns between two sympatric large carnivores. Oikos. 2003;101:591–601.

    Article  Google Scholar 

  • 16.

    Lafferty KD. Fishing for lobsters indirectly increases epidemics in sea urchins. Ecol Appl. 2004;14:1566–73.

    Article  Google Scholar 

  • 17.

    Duffy MA, Hall SR, Tessier AJ, Huebner M. Selective predators and their parasitized prey: Are epidemics in zooplankton under top-down control? Limnol Oceanogr. 2005;50:412–20.

    Article  Google Scholar 

  • 18.

    Hudson PJ, Dobson AP, Newborn D. Do parasites make prey vulnerable to predation? Red grouse and parasites. J Anim Ecol. 1992;61:681.

    Article  Google Scholar 


  • Source: Ecology - nature.com

    MIT and Danish university students unite to envision a more sustainable future

    18S rRNA gene sequences of leptocephalus gut contents, particulate organic matter, and biological oceanographic conditions in the western North Pacific