Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science 316, 847–851 (2007).
Huang, J. et al. Dryland climate change: recent progress and challenges. Rev. Geophys. 55, 719–778 (2017).
Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Akhtar-Schuster, M., Driouech, F. & Sankaran, M.) Ch. 3 (IPCC, Cambridge Univ. Press, 2019).
Prăvălie, R. Drylands extent and environmental issues. A global approach. Earth Sci. Rev. 161, 259–278 (2016).
D’Odorico, P., Bhattachan, A., Davis, K. F., Ravi, S. & Runyan, C. W. Global desertification: drivers and feedbacks. Adv. Water Resour. 51, 326–344 (2013).
Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015). Highlights the critical role of drylands in the global carbon budget by demonstrating that semi-arid ecosystems dominate the inter-annual variability and the increasing trend of global terrestrial carbon sink.
Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).
Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Desertification Synthesis (World Resources Institute, 2005).
El-Beltagy, A. & Madkour, M. Impact of climate change on arid lands agriculture. Agric. Food Secur. 1, 3 (2012).
Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
Cook, K. H. & Vizy, E. K. Detection and analysis of an amplified warming of the Sahara Desert. J. Clim. 28, 6560–6580 (2015).
Zhou, L., Chen, H. & Dai, Y. Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett. 10, 064012 (2015).
Fu, B. et al. The Global-DEP conceptual framework — research on dryland ecosystems to promote sustainability. Curr. Opin. Environ. Sustain. 48, 17–28 (2021). Proposes a conceptual framework that aims to facilitate actionable pathways towards sustainable development of global dryland socio-ecological systems.
Larigauderie, A. & Mooney, H. A. The Intergovernmental science-policy Platform on Biodiversity and Ecosystem Services: moving a step closer to an IPCC-like mechanism for biodiversity. Curr. Opin. Environ. Sustain. 2, 9–14 (2010).
Convention on Biological Diversity. Aichi Biodiversity Targets http://www.cbd.int/sp/targets/default.shtml (2010).
United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations General Assembly, 2015).
Park, C.-E. et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nat. Clim. Change 8, 70–74 (2018).
Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).
Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2015).
Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018). Provides observational evidence for widespread loss of terrestrial water storage over global endorheic basins during 2002–2016 from climate variability and human water extractions.
Scheff, J. & Frierson, D. M. W. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Clim. 28, 5583–5600 (2015).
Koutroulis, A. G. Dryland changes under different levels of global warming. Sci. Total Environ. 655, 482–511 (2019).
Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).
Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. Discuss. 13, 14637–14665 (2013).
Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dyn. 43, 2607–2627 (2014).
Zhang, P. et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095–1099 (2020).
He, B., Wang, S., Guo, L. & Wu, X. Aridity change and its correlation with greening over drylands. Agric. For. Meteorol. 278, 107663 (2019).
Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013). Reveals widespread greening in global arid regions despite warming, and provides quantitative theoretical evidence linking this greening pattern with elevated CO2.
Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007 — an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).
Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M. & McVicar, T. R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).
Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
Beck, H. E. et al. Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 115, 2547–2563 (2011).
United Nations World Water Assessment Programme. The United Nations World Water Development Report 2015: Water for a Sustainable World (UNESCO, 2015).
Wang, L. et al. Dryland ecohydrology and climate change: critical issues and technical advances. Hydrol. Earth Syst. Sci. 16, 2585–2603 (2012).
Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015). A comprehensive summary of contradictory viewpoints of ‘warmer is more arid’ versus ‘warmer is less arid’ that arise from different interpretations of aridity changes, and provides a road map for reconciling such disparities.
Swann, A. L. S. Plants and drought in a changing climate. Curr. Clim. Change Rep. 4, 192–201 (2018).
Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).
Smith, W. K. et al. Remote sensing of dryland ecosystem structure and function: progress, challenges, and opportunities. Remote Sens. Environ. 233, 111401 (2019).
Greve, P., Roderick, M. L., Ukkola, A. M. & Wada, Y. The aridity index under global warming. Environ. Res. Lett. 14, 124006 (2019).
Huang, J., Yu, H., Dai, A., Wei, Y. & Kang, L. Drylands face potential threat under 2°C global warming target. Nat. Clim. Change 7, 417–422 (2017).
Middleton, N. & Thomas, D. World Atlas of Desertification (Arnold, 1997).
Fu, Q. & Feng, S. Responses of terrestrial aridity to global warming. J. Geophys. Res. Atmos. 119, 7863–7875 (2014).
Yang, Y. et al. Disconnection between trends of atmospheric drying and continental runoff. Water Resour. Res. 54, 4700–4713 (2018).
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).
Greve, P., Roderick, M. L. & Seneviratne, S. I. Simulated changes in aridity from the last glacial maximum to 4xCO2. Environ. Res. Lett. 12, 114021 (2017).
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).
Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848–18853 (2019).
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).
Keenan, T. F., Luo, X., Zhang, Y. & Zhou, S. Ecosystem aridity and atmospheric CO2. Science 368, 251–252 (2020).
Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 3853 (2020).
Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2013).
Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946–949 (2016).
Milly, P. & Dunne, K. A. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change. J. Am. Water Resour. Assoc. 53, 822–838 (2017).
De Jeu, R. A. et al. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 29, 399–420 (2008).
Berg, A. & Sheffield, J. Climate change and drought: the soil moisture perspective. Curr. Clim. Change Rep. 4, 180–191 (2018).
Feng, H. & Zhang, M. Global land moisture trends: drier in dry and wetter in wet over land. Sci. Rep. 5, 18018 (2015).
Berg, A., Sheffield, J. & Milly, P. C. D. Divergent surface and total soil moisture projections under global warming. Geophys. Res. Lett. 44, 236–244 (2017).
Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).
Li, M., Wu, P., Ma, Z., Lv, M. & Yang, Q. Changes in soil moisture persistence in China over the past 40 years under a warming climate. J. Clim. 33, 9531–9550 (2020).
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).
Dai, A., Zhao, T. & Chen, J. Climate change and drought: a precipitation and evaporation perspective. Curr. Clim. Change Rep. 4, 301–312 (2018). Highlights the dominant role of CO2radiative forcing in shaping global land surface drying patterns for the twenty-first century.
Schlaepfer, D. R. et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 8, 14196 (2017).
Li, L. et al. Global trends in water and sediment fluxes of the world’s large rivers. Sci. Bull. 65, 62–69 (2019).
Yang, H. et al. Regional patterns of future runoff changes from Earth system models constrained by observation. Geophys. Res. Lett. 44, 5540–5549 (2017).
Wang, S. et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 9, 38–41 (2015).
Milly, P. C. D. & Dunne, K. A. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367, 1252–1255 (2020).
Trancoso, R., Larsen, J. R., McVicar, T. R., Phinn, S. R. & McAlpine, C. A. CO2-vegetation feedbacks and other climate changes implicated in reducing base flow. Geophys. Res. Lett. 44, 2310–2318 (2017).
Dai, A., Qian, T., Trenberth, K. E. & Milliman, J. D. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 22, 2773–2792 (2009).
Hobeichi, S., Abramowitz, G., Evans, J. & Beck, H. E. Linear Optimal Runoff Aggregate (LORA): A global gridded synthesis runoff product. Hydrol. Earth Syst. Sci. 23, 851–870 (2019).
Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).
Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Eyring, V. et al. Taking climate model evaluation to the next level. Nat. Clim. Change 9, 102–110 (2019).
Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016). Reveals the important mechanism that declining soil moisture and altered vegetation physiology under climate change and rising CO2could make the near-surface air even warmer and drier.
Stephens, C. M., McVicar, T. R., Johnson, F. M. & Marshall, L. A. Revisiting pan evaporation trends in Australia a decade on. Geophys. Res. Lett. 45, 11164–11172 (2018).
Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).
Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2020).
Lau, W. K. & Kim, K. M. Robust Hadley circulation changes and increasing global dryness due to CO2 warming from CMIP5 model projections. Proc. Natl Acad. Sci. USA 112, 3630–3635 (2015).
Lau, W. K. M. & Tao, W. Precipitation–radiation–circulation feedback processes associated with structural changes of the ITCZ in a warming climate during 1980–2014: an observational portrayal. J. Clim. 33, 8737–8749 (2020).
Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. USA 114, 12888–12893 (2017).
Condon, L. E., Atchley, A. L. & Maxwell, R. M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 11, 873 (2020).
Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).
García, M. et al. Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints. Remote Sens. Environ. 131, 103–118 (2013).
Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).
Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).
Fowler, M. D., Kooperman, G. J., Randerson, J. T. & Pritchard, M. S. The effect of plant physiological responses to rising CO2 on global streamflow. Nat. Clim. Change 9, 873–879 (2019).
Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).
Haverd, V. et al. Higher than expected CO2 fertilization inferred from leaf to global observations. Glob. Change Biol. 26, 2390–2402 (2020).
Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: a meta-analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).
Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).
Sun, X., Wilcox, B. P. & Zou, C. B. Evapotranspiration partitioning in dryland ecosystems: A global meta-analysis of in situ studies. J. Hydrol. 576, 123–136 (2019).
Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).
Yang, H., Huntingford, C., Wiltshire, A., Sitch, S. & Mercado, L. Compensatory climate effects link trends in global runoff to rising atmospheric CO2 concentration. Environ. Res. Lett. 14, 124075 (2019).
Mankin, J. S. et al. Blue water trade-offs with vegetation in a CO2-enriched climate. Geophys. Res. Lett. 45, 3115–3125 (2018).
Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).
Liu, L. et al. Soil moisture dominates dryness stress on ecosystem production globally. Nat. Commun. 11, 4892 (2020).
Morgan, J. A. et al. C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature 476, 202–205 (2011).
Farrior, C. E., Rodriguez-Iturbe, I., Dybzinski, R., Levin, S. A. & Pacala, S. W. Decreased water limitation under elevated CO2 amplifies potential for forest carbon sinks. Proc. Natl Acad. Sci. USA 112, 7213–7218 (2015).
Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).
Ukkola, A. M., Keenan, T. F., Kelley, D. I. & Prentice, I. C. Vegetation plays an important role in mediating future water resources. Environ. Res. Lett. 11, 094022 (2016).
Mankin, J. S., Smerdon, J. E., Cook, B. I., Williams, A. P. & Seager, R. The curious case of projected twenty-first-century drying but greening in the American West. J. Clim. 30, 8689–8710 (2017).
Zarakas, C. M., Swann, A. L. S., Laguë, M. M., Armour, K. C. & Randerson, J. T. Plant physiology increases the magnitude and spread of the transient climate response to CO2 in CMIP6 Earth system models. J. Clim. 33, 8561–8578 (2020).
Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).
Song, J. et al. Elevated CO2 does not stimulate carbon sink in a semi-arid grassland. Ecol. Lett. 22, 458–468 (2019).
Obermeier, W. A. et al. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Change 7, 137–141 (2016).
Craine, J. M. et al. Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat. Ecol. Evol. 2, 1735–1744 (2018).
Medlyn, B. E. et al. How do leaf and ecosystem measures of water-use efficiency compare? New Phytol. 216, 758–770 (2017).
Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental-scale. Nat. Geosci. 11, 744–748 (2018).
Skinner, C. B., Poulsen, C. J. & Mankin, J. S. Amplification of heat extremes by plant CO2 physiological forcing. Nat. Commun. 9, 1094 (2018).
Lemordant, L. & Gentine, P. Vegetation response to rising CO2 impacts extreme temperatures. Geophys. Res. Lett. 46, 1383–1392 (2019).
Sellers, P. J. et al. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271, 1402–1406 (1996).
Warren, J. M., Norby, R. J. & Wullschleger, S. D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).
De Kauwe, M. G. et al. Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes. Biogeosciences 16, 903–916 (2019).
Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).
Reich, P. B., Hobbie, S. E., Lee, T. D. & Pastore, M. A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 360, 317–320 (2018).
Norby, R. J. et al. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol. 209, 17–28 (2016).
Steffen, W. et al. The emergence and evolution of Earth System Science. Nat. Rev. Earth Environ. 1, 54–63 (2020).
Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).
Marvel, K. et al. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65 (2019).
Di Baldassarre, G. et al. Sociohydrology: scientific challenges in addressing the sustainable development goals. Water Resour. Res. 55, 6327–6355 (2019).
van der Esch, S. et al. Exploring Future Changes in Land Use and Land Condition and the Impacts on Food, Water, Climate Change and Biodiversity: Scenarios for the UNCCD Global Land Outlook (PBL Netherlands Environmental Assessment Agency, 2017).
Gleick, P. H. Transitions to freshwater sustainability. Proc. Natl Acad. Sci. USA 115, 8863–8871 (2018).
Wada, Y., de Graaf, I. E. M. & van Beek, L. P. H. High-resolution modeling of human and climate impacts on global water resources. J. Adv. Model Earth Syst. 8, 735–763 (2016).
Wada, Y. et al. Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016). Provides an ensemble model projection of significant increases in the twenty-first century’s water demand by major water-use sectors under envisaged population growth and socio-economic developments.
Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, W00L06 (2012).
Chen, Y. et al. Recent global cropland water consumption constrained by observations. Water Resour. Res. 55, 3708–3738 (2019).
Allen, L. H. Jr., Kakani, V. G., Vu, J. C. & Boote, K. J. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. J. Plant Physiol. 168, 1909–1918 (2011).
Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2014).
Urban, D. W., Sheffield, J. & Lobell, D. B. Historical effects of CO2 and climate trends on global crop water demand. Nat. Clim. Change 7, 901–905 (2017).
Gleeson, T., Wada, Y., Bierkens, M. F. & van Beek, L. P. Water balance of global aquifers revealed by groundwater footprint. Nature 488, 197–200 (2012).
Bierkens, M. F. P. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 063002 (2019).
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).
Eamus, D. & Froend, R. Groundwater-dependent ecosystems: the where, what and why of GDEs. Aust. J. Bot. 54, 91–96 (2006).
Griebler, C. & Avramov, M. Groundwater ecosystem services: a review. Freshw. Sci. 34, 355–367 (2015).
Devitt, T. J., Wright, A. M., Cannatella, D. C. & Hillis, D. M. Species delimitation in endangered groundwater salamanders: implications for aquifer management and biodiversity conservation. Proc. Natl Acad. Sci. USA 116, 2624–2633 (2019).
Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).
Hong, S. et al. Divergent responses of soil organic carbon to afforestation. Nat. Sustain. 3, 694–700 (2020).
McVicar, T. R. et al. Developing a decision support tool for China’s re-vegetation program: Simulating regional impacts of afforestation on average annual streamflow in the Loess Plateau. For. Ecol. Manag. 251, 65–81 (2007).
Zhao, M. et al. Ecological restoration impact on total terrestrial water storage. Nat. Sustain. 4, 56–62 (2020).
Kwon, H.-Y. et al. in Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development Ch. 8 (eds Nkonya E., Mirzabaev A. & von Braun J.) 197-214 (Springer, 2016).
Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E. & Harris, A. T. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 29, 261–299 (2004).
Dunne, T., Western, D. & Dietrich, W. E. Effects of cattle trampling on vegetation, infiltration, and erosion in a tropical rangeland. J. Arid. Environ. 75, 58–69 (2011).
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).
Reisman-Berman, O., Keasar, T. & Tel-Zur, N. Native and non-native species for dryland afforestation: bridging ecosystem integrity and livelihood support. Ann. For. Sci. 76, 114 (2019).
Zhang, J. et al. Carrying capacity for vegetation across northern China drylands. Sci. Total Environ. 710, 136391 (2020).
Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).
Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J. & Vicente, O. Breeding and domesticating crops adapted to drought and salinity: a new paradigm for increasing food production. Front. Plant Sci. 6, 978 (2015).
Graham, N. T. et al. Water sector assumptions for the Shared Socioeconomic Pathways in an integrated modeling framework. Water Resour. Res. 54, 6423–6440 (2018).
Muhs, D. R. The geologic records of dust in the Quaternary. Aeolian Res. 9, 3–48 (2013).
Scheff, J., Seager, R., Liu, H. & Coats, S. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).
Lambert, F. et al. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616–619 (2008).
Salzmann, U. et al. Climate and environment of a Pliocene warm world. Palaeogeogr. Palaeoclimatol. Palaeoecol. 309, 1–8 (2011).
Fu, Q., Lin, L., Huang, J., Feng, S. & Gettelman, A. Changes in terrestrial aridity for the period 850–2080 from the Community Earth System Model. J. Geophys. Res. Atmos. 121, 2857–2873 (2016).
Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267 (2014).
Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).
Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).
Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).
Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Change 3, 30–36 (2012).
Williams, A. P. et al. Forest responses to increasing aridity and warmth in the southwestern United States. Proc. Natl Acad. Sci. USA 107, 21289–21294 (2010).
Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).
Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).
Hoover, D. L., Knapp, A. K. & Smith, M. D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95, 2646–2656 (2014).
Greve, P. et al. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 1, 486–494 (2018).
Scanlon, B. R. et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl Acad. Sci. USA 115, E1080–E1089 (2018).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
Roderick, M. L., Sun, F., Lim, W. H. & Farquhar, G. D. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 18, 1575–1589 (2014).
Gudmundsson, L., Greve, P. & Seneviratne, S. I. The sensitivity of water availability to changes in the aridity index and other factors—A probabilistic analysis in the Budyko space. Geophys. Res. Lett. 43, 6985–6994 (2016).
American Meteorological Society. Glossary of Meteorology http://glossary.ametsoc.org/wiki/Aridity (2000).
Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration — Guidelines for Computing Crop Water Requirements — FAO Irrigation and Drainage Paper 56 (Food and Agriculture Organization of the United Nations, 1998).
Dai, A. Drought under global warming: a review. Wiley Interdiscip. Rev. Clim. Change 2, 45–65 (2011).
Dai A. in Terrestrial Water Cycle and Climate Change: Natural and Human-Induced Impacts 1st edn, Ch. 2 (eds Tang, Q. & Oki, T.) 17-37 (Wiley, 2016).
Sitch, S. et al. Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeosci. Discuss. 10, 20113–20177 (2013).
Donohue, R. J., Roderick, M. L., McVicar, T. R. & Yang, Y. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO2 reveals distinct response patterns between disturbed and undisturbed vegetation. J. Geophys. Res. Biogeosci. 122, 168–184 (2017).
Barton, C. V. M. et al. Effects of elevated atmospheric [CO2] on instantaneous transpiration efficiency at leaf and canopy scales in Eucalyptus saligna. Glob. Change Biol. 18, 585–595 (2012).
Savvides, A. M. & Fotopoulos, V. Two inexpensive and non-destructive techniques to correct for smaller-than-gasket leaf area in gas exchange measurements. Front. Plant Sci. 9, 548 (2018).
Source: Ecology - nature.com