More stories

  • in

    Evaluation of PCR conditions for characterizing bacterial communities with full-length 16S rRNA genes using a portable nanopore sequencer

    1.
    Turnbaugh, P. et al. The human microbiome project. Nature 449, 804–810 (2007).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    3.
    Sivasubramaniam, D. & Franks, A. Bioengineering microbial communities: their potential to help, hinder and disgust. Bioengineered 7, 137–144 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Dunbar, J. et al. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65, 1662–1669 (1999).
    CAS  PubMed  PubMed Central  Google Scholar 

    5.
    Cottrell, M. T. & Kirchman, D. L. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66, 5116–5122 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Clement, B. G., Kehl, L. E., DeBord, K. L. & Kitts, C. L. Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J. Microbiol. Methods 31, 135–142 (1998).
    CAS  Google Scholar 

    7.
    Brunk, C. F., Avaniss-Aghajani, E. & Brunk, C. A. A computer analysis of primer and probe hybridization potential with bacterial small-subunit rRNA sequences. Appl. Environ. Microbiol. 62, 872–879 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    8.
    Ferris, M. J., Muyzer, G. & Ward, D. M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62, 340–346 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    9.
    Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Liu, L. et al. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. https://doi.org/10.1155/2012/251364 (2012).
    Article  PubMed  PubMed Central  Google Scholar 

    11.
    Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10, 5029 (2019).
    ADS  PubMed  PubMed Central  Google Scholar 

    12.
    Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 13, 341 (2012).
    CAS  Google Scholar 

    13.
    Cai, L. et al. Biased diversity metrics revealed by bacterial 16S pyrotags derived from different primer sets. PLoS ONE 8, e53649 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Guo, F., Ju, F., Cai, L. & Zhang, T. Taxonomic precision of different hypervariable regions of 16S rRNA gene and annotation methods for functional bacterial groups in biological wastewater treatment. PLoS ONE 8, e76185 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Wang, F. et al. Assessment of 16S rRNA gene primers for studying bacterial community structure and function of aging flue-cured tobaccos. AMB Express 8, 182–182 (2018).
    PubMed  PubMed Central  Google Scholar 

    16.
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
    CAS  PubMed  Google Scholar 

    17.
    Wommack, K. E., Bhavsar, J. & Ravel, J. Metagenomics: read length matters. Appl. Environ. Microbiol. 74, 1453–1463 (2008).
    CAS  PubMed  PubMed Central  Google Scholar 

    18.
    Earl, J. P. et al. Species-level bacterial community profiling of the healthy sinonasal microbiome using pacific biosciences sequencing of full-length 16S rRNA genes. Microbiome 6, 190 (2018).
    PubMed  PubMed Central  Google Scholar 

    19.
    Whon, T. W. et al. The effects of sequencing platforms on phylogenetic resolution in 16 S rRNA gene profiling of human feces. Sci. Data 5, 180068 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    20.
    Schmidt, K. et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 72, 104–114 (2016).
    PubMed  Google Scholar 

    21.
    Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience. https://doi.org/10.1093/gigascience/giy033 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    22.
    Benítez-Páez, A., Portune, K. J. & Sanz, Y. Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore sequencer. Gigascience https://doi.org/10.1186/s13742-016-0111-z (2016).
    Article  PubMed  PubMed Central  Google Scholar 

    23.
    Mitsuhashi, S. et al. A portable system for rapid bacterial composition analysis using a nanopore-based sequencer and laptop computer. Sci. Rep. 7, 5657 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    24.
    Srivathsan, A. et al. Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing. BMC Biol. 17, 96 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Smyth, R. P. et al. Reducing chimera formation during PCR amplification to ensure accurate genotyping. Gene 469, 45–51 (2010).
    CAS  PubMed  Google Scholar 

    26.
    Gołębiewski, M. & Tretyn, A. Generating amplicon reads for microbial community assessment with next-generation sequencing. J. Appl. Microbiol. 128, 330–354 (2020).
    PubMed  Google Scholar 

    27.
    Hongoh, Y., Yuzawa, H., Ohkuma, M. & Kudo, T. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 221, 299–304 (2003).
    CAS  PubMed  Google Scholar 

    28.
    D’Amore, R. et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genom. 17, 55 (2016).
    Google Scholar 

    29.
    Wu, J. Y. et al. Effects of polymerase, template dilution and cycle number on PCR based 16 S rRNA diversity analysis using the deep sequencing method. BMC Microbiol. 10, 255 (2010).
    PubMed  PubMed Central  Google Scholar 

    30.
    Aird, D. et al. Analyzing and minimizing PCR amplification bias in illumina sequencing libraries. Genome Biol. 12, R18 (2011).
    CAS  PubMed  PubMed Central  Google Scholar 

    31.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    32.
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint, arXiv:1303.3997 (2013).

    34.
    Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
    CAS  PubMed  Google Scholar 

    35.
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Google Scholar 

    36.
    Hill, M. O. Diversity and evenness: a unifying notation and its consequences. Ecology 54, 427–432 (1973).
    Google Scholar 

    37.
    Nicholls, S. M., Quick, J. C., Tang, S. & Loman, N. J. Ultra-deep, long-read nanopore sequencing of MOCK microbial community standards. Gigascience https://doi.org/10.1093/gigascience/giz043 (2019).
    Article  PubMed  PubMed Central  Google Scholar 

    38.
    Kai, S. et al. Rapid bacterial identification by direct PCR amplification of 16S rRNA genes using the MinIONTM nanopore sequencer. FEBS Open Bio. 9, 548–557 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Suzuki, M. T. & Giovannoni, S. J. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62, 625–630 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Gohl, D. M. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949 (2016).
    CAS  PubMed  Google Scholar 

    41.
    Penna, V. T., Martins, S. A. & Mazzola, P. G. Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system. BMC Public Health 2, 13 (2002).
    PubMed  PubMed Central  Google Scholar 

    42.
    Burrows, S. M. et al. Bacteria in the global atmosphere: part 2—modeling of emissions and transport between different ecosystems. Atmos. Chem. Phys. 9, 9281–9297 (2009).
    ADS  CAS  Google Scholar 

    43.
    Nakagawa, S. et al. Rapid sequencing-based diagnosis of infectious bacterial species from meningitis patients in Zambia. Clin. Transl. Immunol. 8, e01087 (2019).
    Google Scholar 

    44.
    Good, I. J. The population frequencies of species and the estimation of population parameters. Biometrika 40, 237–264 (1953).
    MathSciNet  MATH  Google Scholar 

    45.
    Lemos, L. N., Fulthorpe, R. R., Triplett, E. W. & Roesch, L. F. Rethinking microbial diversity analysis in the high throughput sequencing era. J. Microbiol. Methods 86, 42–51 (2011).
    CAS  PubMed  Google Scholar 

    46.
    Walker, A. W. et al. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome 3, 26 (2015).
    PubMed  PubMed Central  Google Scholar 

    47.
    Hu, L. et al. Assessment of Bifidobacterium species using groEL gene on the basis of Illumina MiSeq high-throughput sequencing. Genes 8, 336 (2017).
    PubMed Central  Google Scholar 

    48.
    Nygaard, A. B., Tunsjø, H. S., Meisal, R. & Charnock, C. A preliminary study on the potential of nanopore MinION and illumina MiSeq 16S rRNA gene sequencing to characterize building-dust microbiomes. Sci. Rep. 10, 3209 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    49.
    Ichijo, T. et al. Distribution and respiratory activity of mycobacteria in household water system of healthy volunteers in Japan. PLoS ONE 9, e110554 (2014).
    ADS  PubMed  PubMed Central  Google Scholar 

    50.
    Arai, S. et al. Assessment of pig saliva as a Streptococcus suis reservoir and potential source of infection on farms by use of a novel quantitative polymerase chain reaction assay. Am. J. Vet. Res. 79, 941–948 (2018).
    CAS  PubMed  Google Scholar 

    51.
    Lu, Q., Hu, H., Mo, J. & Shu, L. Enhanced amplification of bacterial and fungal DNA using a new type of DNA polymerase. Aust. Plant Pathol. 41, 661–663 (2012).
    CAS  Google Scholar 

    52.
    Andrews, S. FastQC: a quality control tool for high throughput sequence data. Available online at: https://www.bioinformatics.babraham.ac.uk/projects/fastqc.

    53.
    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962 (2016).
    PubMed  PubMed Central  Google Scholar 

    54.
    Jain, M. et al. Improved data analysis for the MinION nanopore sequencer. Nat. Methods 12, 351–356 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    55.
    R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2018). More

  • in

    Keeping pace with marine heatwaves

    1.
    Mills, K. E. et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26, 191–195 (2013).
    Google Scholar 
    2.
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
    Google Scholar 

    3.
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).
    Google Scholar 

    4.
    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: Extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019).
    Google Scholar 

    5.
    Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).
    Google Scholar 

    6.
    Benthuysen, J. A., Oliver, E. C. J., Chen, K. & Wernberg, T. Advances in understanding marine heatwaves and their impacts. Front. Mar. Sci. 7, 147 (2020).
    Google Scholar 

    7.
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
    Google Scholar 

    8.
    Wernberg, T. Marine heatwave drives collapse of kelp forests in Western Australia. In Ecosystem Collapse and Climate Change. Ecological Studies (eds. Canadell, J. G. & Jackson, R. B.) (Springer-Nature, 2020).

    9.
    Pearce, A. et al. The “Marine Heat Wave” Off Western Australia During the Summer of 2010/11. Fisheries Research Report No. 222 (40pp) (Department of Fisheries, Western Australia, 2011)

    10.
    Olita, A. et al. Effects of the 2003 European heatwave on the Central Mediterranean Sea: surface fluxes and the dynamical response. Ocean Sci. 3, 273–289 (2007).
    Google Scholar 

    11.
    Pearce, A. F. & Feng, M. The rise and fall of the ‘marine heat wave’ off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111–112, 139–156 (2013).
    Google Scholar 

    12.
    Chen, K., Gawarkiewicz, G. G., Lentz, S. J. & Bane, J. M. Diagnosing the warming of the Northeastern U.S. Coastal Ocean in 2012: A linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. Oceans 119, 218–227 (2014).
    Google Scholar 

    13.
    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).
    Google Scholar 

    14.
    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).
    Google Scholar 

    15.
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).
    Google Scholar 

    16.
    Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep British Columbia fjord. Geophys. Res. Lett. 45, 9757–9764 (2018).
    Google Scholar 

    17.
    Reed, D. et al. Extreme warming challenges sentinel status of kelp forests as indicators of climate change. Nat. Commun. 7, 13757 (2016).
    Google Scholar 

    18.
    Jacox, M., Tommasi, D., Alexander, M., Hervieux, G. & Stock, C. Predicting the evolution of the 2014-16 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497 (2019).
    Google Scholar 

    19.
    Lee, T. et al. Record warming in the South Pacific and western Antarctica associated with the strong central-Pacific El Niño in 2009–10. Geophys. Res. Lett. 37, L19704 (2010).
    Google Scholar 

    20.
    Benthuysen, J. A., Oliver, E. C. J., Feng, M. & Marshall, A. G. Extreme marine warming across tropical Australia during austral summer 2015–2016. J. Geophys. Res. Oceans 123, 1301–1326 (2018).
    Google Scholar 

    21.
    Eakin, C. M., Sweatman, H. P. A. & Brainard, R. E. The 2014–2017 global-scale coral bleaching event: insights and impacts. Coral Reefs 38, 539–545 (2019).
    Google Scholar 

    22.
    Gurgel, C. F. D., Camacho, O., Minne, A. J. P., Wernberg, T. & Coleman, M. A. Marine heatwave drives cryptic loss of genetic diversity in underwater forests. Curr. Biol. 30, 1199–1206 (2020).
    Google Scholar 

    23.
    Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593 (2016).
    Google Scholar 

    24.
    Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484 (2019).
    Google Scholar 

    25.
    Caputi, N. et al. Management Implications of Climate Change Effect on Fisheries in Western Australia, Part 2: Case Studies. Fisheries Research Report No. 261 (156pp) (Department of Fisheries, Western Australia, 2015).

    26.
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
    Google Scholar 

    27.
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).
    Google Scholar 

    28.
    Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 84 (2019).
    Google Scholar 

    29.
    Arafeh-Dalmau, N. et al. Extreme marine heatwaves alter kelp forest community near its equatorward distribution limit. Front. Mar. Sci. 6, 499 (2019).
    Google Scholar 

    30.
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338–344 (2018).
    Google Scholar 

    31.
    Zisserson, B. & Cook, A. Impact of bottom water temperature change on the southernmost snow crab fishery in the Atlantic Ocean. Fish. Res. 195, 12–18 (2017).
    Google Scholar 

    32.
    Caputi, N., Jackson, G. & Pearce, A. The Marine Heat Wave Off Western Australia During the Summer of 2010/11 – 2 Years On. Fisheries Research Report No. 250 (40pp) (Department of Fisheries, Western Australia, 2014).

    33.
    Cavole, L. M. et al. Biological Impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).
    Google Scholar 

    34.
    Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).
    Google Scholar 

    35.
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).
    Google Scholar 

    36.
    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).
    Google Scholar 

    37.
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).
    Google Scholar 

    38.
    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).
    Google Scholar 

    39.
    Rodrigues, R. R., Taschetto, A. S., Sen Gupta, A. & Foltz, G. R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 12, 620–626 (2019).
    Google Scholar 

    40.
    Black, E., Blackburn, M., Harrison, R. G., Hoskins, B. J. & Methven, J. Factors contributing to the summer 2003 European heatwave. Weather 59, 217–223 (2004).
    Google Scholar 

    41.
    Chen, K., Gawarkiewicz, G., Kwon, Y.-O. & Zhang, W. The role of atmospheric forcing versus ocean advection during the extreme warming of the Northeast U.S. continental shelf in 2012. J. Geophys. Res. Oceans 120, 4324–4339 (2015).
    Google Scholar 

    42.
    Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: Drivers, mechanisms and impacts. Environ. Res. Lett. 14, 044023 (2019).
    Google Scholar 

    43.
    Perkins-Kirkpatrick, S. E. et al. The role of natural variability and anthropogenic climate change in the 2017/18 Tasman Sea marine heatwave. Bull. Am. Meteorol. Soc. 100, S105–S110 (2019).
    Google Scholar 

    44.
    Sparnocchia, S., Schiano, M. E., Picco, P., Bozzano, R. & Cappelletti, A. The anomalous warming of summer 2003 in the surface layer of the Central Ligurian Sea (Western Mediterranean). Ann. Geophys. 24, 443–452 (2006).
    Google Scholar 

    45.
    Swain, D. L. et al. The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bull. Am. Meteorol. Soc. 95, S3–S7 (2014).
    Google Scholar 

    46.
    Alexander, M. A., Deser, C. & Timlin, M. S. The reemergence of SST anomalies in the North Pacific Ocean. J. Clim. 12, 2419–2433 (1999).
    Google Scholar 

    47.
    Benthuysen, J., Feng, M. & Zhong, L. Spatial patterns of warming off Western Australia during the 2011 Ningaloo Niño: Quantifying impacts of remote and local forcing. Cont. Shelf Res. 91, 232–246 (2014).
    Google Scholar 

    48.
    Kataoka, T., Tozuka, T. & Yamagata, T. Generation and decay mechanisms of Ningaloo Niño/Niña. J. Geophys. Res. Oceans 122, 8913–8932 (2017).
    Google Scholar 

    49.
    Behrens, E., Fernandez, D. & Sutton, P. Meridional oceanic heat transport influences marine heatwaves in the Tasman Sea on interannual to decadal timescales. Front. Mar. Sci. 6, 228 (2019).
    Google Scholar 

    50.
    Scannell, H. A., Pershing, A. J., Alexander, M. A., Thomas, A. C. & Mills, K. E. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 43, 2069–2076 (2016).
    Google Scholar 

    51.
    Hartmann, D. L. Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett. 42, 1894–1902 (2015).
    Google Scholar 

    52.
    Marshall, A. G. & Hendon, H. H. Impacts of the MJO in the Indian Ocean and on the Western Australian coast. Clim. Dyn. 42, 579–595 (2014).
    Google Scholar 

    53.
    Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J. & Zinke, J. Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean. Sci. Rep. 7, 2443 (2017).
    Google Scholar 

    54.
    Kataoka, T., Tozuka, T., Behera, S. & Yamagata, T. On the Ningaloo Niño/Niña. Clim. Dyn. 43, 1463–1482 (2013).
    Google Scholar 

    55.
    Holbrook, N. J., Goodwin, I. D., McGregor, S., Molina, E. & Power, S. B. ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 547–558 (2011).
    Google Scholar 

    56.
    Li, Z., Holbrook, N. J., Zhang, X., Oliver, E. C. J. & Cougnon, E. A. Remote forcing of Tasman Sea marine heatwaves. J. Clim. 33, 5337–5354 (2020).
    Google Scholar 

    57.
    Schaeffer, A. & Roughan, M. Subsurface intensification of marine heatwaves off southeastern Australia: The role of stratification and local winds. Geophys. Res. Lett. 44, 5025–5033 (2017).
    Google Scholar 

    58.
    Elzahaby, Y. & Schaeffer, A. Observational Insight Into the subsurface anomalies of marine heatwaves. Front. Mar. Sci. 6, 745 (2019).
    Google Scholar 

    59.
    Ridgway, K. R., Dunn, J. R. & Wilkin, J. L. Ocean interpolation by four-dimensional weighted least squares — Application to the waters around Australasia. J. Atmos. Ocean. Technol. 19, 1357–1375 (2002).
    Google Scholar 

    60.
    Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 82, 81–100 (2009).
    Google Scholar 

    61.
    Moltmann, T. The “coastal data paradox”. J. Ocean Technol. 13, 148–149 (2018).
    Google Scholar 

    62.
    Oliver, E. C. J. et al. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability. Prog. Oceanogr. 161, 116–130 (2018).
    Google Scholar 

    63.
    Darmaraki, S. et al. Future evolution of marine heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).
    Google Scholar 

    64.
    Schlegel, R. W., Oliver, E. C. J., Hobday, A. J. & Smit, A. J. Detecting marine heatwaves with sub-optimal data. Front. Mar. Sci. 6, 737 (2019).
    Google Scholar 

    65.
    Salinger, J. et al. Decadal-scale forecasting of climate drivers for marine applications. Adv. Mar. Biol. 74, 1–68 (2016).
    Google Scholar 

    66.
    Dunstan, P. K. et al. How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States? Mar. Policy 88, 295–302 (2018).
    Google Scholar 

    67.
    Smith, G. & Spillman, C. New high-resolution sea surface temperature forecasts for coral reef management on the Great Barrier Reef. Coral Reefs 38, 1039–1056 (2019).
    Google Scholar 

    68.
    White, C. J. et al. Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorol. Appl. 24, 315–325 (2017).
    Google Scholar 

    69.
    Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 25, 45–56 (2016).
    Google Scholar 

    70.
    Game, E. T., Watts, M. E., Wooldridge, S. & Possingham, H. P. Planning for persistence in marine reserves: a question of catastrophic importance. Ecol. Appl. 18, 670–680 (2008).
    Google Scholar 

    71.
    Johnson, C. R., Chabot, R. H., Marzloff, M. P. & Wotherspoon, S. Knowing when (not) to attempt ecological restoration. Restor. Ecol. 25, 140–147 (2017).
    Google Scholar 

    72.
    Tommasi, D. et al. Managing living marine resources in a dynamic environment: the role of seasonal to decadal climate forecasts. Prog. Oceanogr. 152, 15–49 (2017).
    Google Scholar 

    73.
    Marshall, A. G., Hendon, H. H., Feng, M. & Schiller, A. Initiation and amplification of the Ningaloo Niño. Clim. Dyn. 45, 2367–2385 (2015).
    Google Scholar 

    74.
    D’Andrea, F. et al. Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988. Clim. Dyn. 14, 385–407 (1998).
    Google Scholar 

    75.
    Scaife, A. A., Woollings, T., Knight, J., Martin, G. & Hinton, T. Atmospheric blocking and mean biases in climate models. J. Clim. 23, 6143–6152 (2010).
    Google Scholar 

    76.
    Davini, P. & D’Andrea, F. Northern Hemisphere atmospheric blocking representation in global climate models: Twenty years of improvements? J. Clim. 29, 8823–8840 (2016).
    Google Scholar 

    77.
    Kwon, Y. O., Camacho, A., Martinez, C. & Seo, H. North Atlantic winter eddy-driven jet and atmospheric blocking variability in the Community Earth System Model version 1 Large Ensemble simulations. Clim. Dyn. 51, 3275–3289 (2018).
    Google Scholar 

    78.
    Pilo, G. S., Mata, M. M. & Azevedo, J. L. L. Eddy surface properties and propagation at Southern Hemisphere western boundary current systems. Ocean Sci. 11, 629–641 (2015).
    Google Scholar 

    79.
    Oliver, E. C. J., Wotherspoon, S. J., Chamberlain, M. A. & Holbrook, N. J. Projected Tasman Sea extremes in sea surface temperature through the twenty-first century. J. Clim. 27, 1980–1998 (2014).
    Google Scholar 

    80.
    Oliver, E. C. J., O’Kane, T. J. & Holbrook, N. J. Projected changes to Tasman Sea eddies in a future climate. J. Geophys. Res. Oceans 120, 7150–7165 (2015).
    Google Scholar 

    81.
    Hu, Z-Z., Kumar, A., Jha, B., Zhu, J. & Huang, B. Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific ocean during 2014–16. J. Clim. 30, 689–702 (2017).
    Google Scholar 

    82.
    Spillman, C. M. Operational real-time seasonal forecasts for coral reef management. J. Oper. Oceanogr. 4, 13–22 (2011).
    Google Scholar 

    83.
    Yang, Y. et al. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci. Remote Sens. Lett. 15, 207–211 (2018).
    Google Scholar 

    84.
    Hobday, A. J. et al. Ethical considerations and unanticipated consequences associated with ecological forecasting for marine resources. ICES J. Mar. Sci. 76, 1244–1256 (2019).
    Google Scholar 

    85.
    Quinting, J. F. & Reeder, M. J. Southeastern Australian heat waves from a trajectory viewpoint. Mon. Wea. Rev. 145, 4109–4125 (2017).
    Google Scholar 

    86.
    Quinting, J. F., Parker, T. J. & Reeder, M. J. Two synoptic routes to subtropical heat waves as illustrated in the Brisbane region of Australia. Geophys. Res. Lett. 45, 10,700–10,708 (2018).
    Google Scholar 

    87.
    Doblin, M. A. & Van Sebille, E. Drift in ocean currents impacts intergenerational microbial exposure to temperature. Proc. Natl Acad. Sci. USA 113, 5700–5705 (2016).
    Google Scholar 

    88.
    Zhang, X., Cornuelle, B. & Roemmich, D. Sensitivity of western boundary transport at the mean north equatorial current bifurcation latitude to wind forcing. J. Phys. Oceanogr. 42, 2056–2072 (2012).
    Google Scholar 

    89.
    Pecl, G. T. et al. Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot. Ambio 48, 1498–1515 (2019).
    Google Scholar 

    90.
    Serrao-Neumann, S. et al. Marine governance to avoid tipping points: can we adapt the adaptability envelope? Mar. Policy 65, 56–67 (2016).
    Google Scholar 

    91.
    Hobday, A. J. et al. A framework for combining seasonal forecasts and climate projections to aid risk management for fisheries and aquaculture. Front. Mar. Sci. 5, 137 (2018).
    Google Scholar 

    92.
    Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400, 7–16 (2011).
    Google Scholar 

    93.
    Strain, E. M. A., Thomson, R. J., Micheli, F., Mancuso, F. P. & Airoldi, L. Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob. Change Biol. 20, 3300–3312 (2014).
    Google Scholar 

    94.
    Bates, A. E. et al. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4, 62–67 (2014).
    Google Scholar 

    95.
    Connell, S. D. & Ghedini, G. Resisting regime-shifts: the stabilising effect of compensatory processes. Trends Ecol. Evol. 30, 513–515 (2015).
    Google Scholar 

    96.
    Bruno, J. F., Côté, I. M. & Toth, L. T. Climate change, coral loss, and the curious case of the parrotfish paradigm: Why don’t marine protected areas improve reef resilience? Annu. Rev. Mar. Sci. 11, 307–334 (2019).
    Google Scholar 

    97.
    Coleman, M. A. & Goold, H. D. Harnessing synthetic biology for kelp forest conservation1. J. Phycol. 55, 745–751 (2019).
    Google Scholar 

    98.
    Vergés, A. et al. Tropicalisation of temperate reefs: Implications for ecosystem functions and management actions. Funct. Ecol. 33, 1000–1013 (2019).
    Google Scholar 

    99.
    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. in World Seas: An Environmental Evaluation 2nd edn (ed. Sheppard, C.) 57–78 (Academic, 2019).

    100.
    Filbee-Dexter, K. & Smajdor, A. Ethics of assisted evolution in marine conservation. Front. Mar. Sci. 6, 20 (2019).
    Google Scholar 

    101.
    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173 (2018).
    Google Scholar 

    102.
    Chandrapavan, A., Caputi, N. & Kangas, M. I. The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Front. Mar. Sci. 6, 510 (2019).
    Google Scholar 

    103.
    Oliver, E. C. J. Mean warming not variability drives marine heatwave trends. Clim. Dyn. 53, 1653–1659 (2019).
    Google Scholar 

    104.
    Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019).
    Google Scholar 

    105.
    Vinagre, C. et al. Upper thermal limits and warming safety margins of coastal marine species – Indicator baseline for future reference. Ecol. Indic. 102, 644–649 (2019).
    Google Scholar 

    106.
    Nakamura, N. & Huang, C. S. Y. Atmospheric blocking as a traffic jam in the jet stream. Science 361, 42–47 (2018).
    Google Scholar 

    107.
    Mann, M. E. et al. Projected changes in persistent extreme summer weather events: the role of quasi-resonant amplification. Sci. Adv. 4, eaat3272 (2018).
    Google Scholar 

    108.
    Straub, S. C. et al. Resistance, extinction, and everything in between – the diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 6, 763 (2019).
    Google Scholar 

    109.
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).
    Google Scholar 

    110.
    Jacox, M. G. et al. Seasonal-to-interannual prediction of North American coastal marine ecosystems: Forecast methods, mechanisms of predictability, and priority developments. Prog. Oceanogr. 183, 102307 (2020).
    Google Scholar 

    111.
    Feng, M., McPhaden, M. J., Xie, S. P. & Hafner, J. La Niña forces unprecedented Leeuwin Current warming in 2011. Sci. Rep. 3, 1227 (2013).
    Google Scholar 

    112.
    Gammelsrød, T., Bartholomae, C. H., Boyer, D. C., Filipe, V. L. L. & O’Toole, M. J. Intrusion of warm surface water along the Angolan Namibian coast in February–March 1995: the 1995 Benguela Niño. S. Afr. J. Mar. Sci. 19, 41–56 (1998).
    Google Scholar 

    113.
    Spencer, T., Teleki, K. A., Bradshaw, C. & Spalding, M. D. Coral bleaching in the southern Seychelles during the 1997–1998 Indian Ocean warm event. Mar. Pollut. Bull. 40, 569–586 (2000).
    Google Scholar 

    114.
    McPhaden, M. J. Genesis and evolution of the 1997-98 El Niño. Science 283, 950–954 (1999).
    Google Scholar 

    115.
    Vivekanandan, E., Hussain Ali, M., Jasper, B. & Rajagopalan, M. Thermal thresholds for coral bleaching in the Indian seas. J. Mar. Biol. Assoc. India 50, 209–214 (2008).
    Google Scholar 

    116.
    Krishnan, P. et al. Elevated sea surface temperature during May 2010 induces mass bleaching of corals in the Andaman. Curr. Sci. 100, 111–117 (2011).
    Google Scholar 

    117.
    Collins, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 589–655 (Intergovernmental Panel on Climate Change (IPCC), 2019).

    118.
    Frölicher, T. L. in Predicting Future Oceans (eds Cisneros-Montemayor, A. M., Cheung, W. W. L. & Yoshitaka, O.) 53–60 (Elsevier, 2019).

    119.
    Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).
    Google Scholar 

    120.
    Huang, B. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).
    Google Scholar 

    121.
    Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).
    Google Scholar 

    122.
    Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K. & Janssen, P. A coupled data assimilation system for climate reanalysis. Q. J. R. Meteorol. Soc. 142, 65–78 (2016).
    Google Scholar 

    123.
    Giese, B. S., Seidel, H. F., Compo, G. P. & Sardeshmukh, P. D. An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J. Geophys. Res. Oceans 121, 6891–6910 (2016).
    Google Scholar 

    124.
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
    Google Scholar 

    125.
    Griffin, C., Beggs H. & Majewski, L. GHRSST compliant AVHRR SST products over the Australian region – Version 1, Technical Report, 151 pp (Bureau of Meteorology, Melbourne, Australia, 2017).

    126.
    Wijffels, S. E. et al. A fine spatial-scale sea surface temperature atlas of the Australian regional seas (SSTAARS): Seasonal variability and trends around Australasia and New Zealand revisited. J. Mar. Syst. 187, 156–196 (2018).
    Google Scholar 

    127.
    Oke, P. R. et al. Towards a dynamically balanced eddy-resolving ocean reanalysis: BRAN3. Ocean Model. 67, 52–70 (2013).
    Google Scholar 

    128.
    Wessel, P. & Smith, W. H. F. A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).
    Google Scholar 

    129.
    Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).
    Google Scholar 

    130.
    Pershing, A. J. et al. Challenges to natural and human communities from surprising ocean temperatures. Proc. Natl Acad. Sci. USA 116, 18378–18383 (2019).
    Google Scholar  More

  • in

    Colonization history affects heating rates of invasive cane toads

    We hand-collected adult toads (n = 8 individuals per site) from four sites across the toads’ tropical range within Australia, from Townsville, Qld in the east (GPS coordinates: − 19.26, 146.82, 14 m altitude) to Richmond, Qld (− 20.73, 143.14, 218 m altitude), Middle Point, NT (− 12.56, 131.33, 12 m altitude) and Kununurra, WA (− 15.78, 128.74, 49 m altitude) in the west. That transect spans the toads’ 80-year invasion history. Although both temperatures and precipitation exhibit a general east–west cline, the greatest disparities in the duration of hot dry conditions per year lie between the easternmost site (Townsville) and the three other sites (Fig. 1). We recorded toad mass (after gently squeezing the animal in a standardized manner to induce it to empty its bladder) and snout-vent length (SVL) immediately before conducting the trials.
    Figure 1

    Data from Australian Bureau of Meteorology7.

    Mean climatic conditions in the four sites from which we collected cane toads (Rhinella marina) for use in laboratory trials. The red line connects mean monthly maximum air temperatures, the green line shows mean monthly air temperatures, and the blue line shows mean monthly minimum air temperatures. Histograms show mean monthly rainfall.

    Full size image

    Toads were not fed for three days prior to experiments, to ensure they would not defecate during the experiment and minimize variability in mass due to stomach contents. Toads from all four populations were housed in a room kept at 18 °C, then moved concurrently to a temperature-controlled room set at 37 °C. All toads were in separate containers (ventilated plastic boxes of 1-L capacity), half of which had dry paper towel as substrate whereas the other half had 40 mL of water, enough to keep the ventral portion of the body moist but not the rest of the body.
    We measured toad body temperatures at the beginning of the trial, and after 20 min and 40 min, using an infrared thermometer (Digitech QM7215) held ~ 10 cm from the toad’s dorsal surface. At the beginning and end of the experiment we measured internal temperatures with a cloacal probe (Digitech QM7215 with probe attachment), to check that our measurements of external body temperature offer robust estimates of internal temperature also. Cloacal temperatures were taken within 10 s of each toad’s removal from the container. After a trial, toads were kept at a temperature of 25 °C, allowed to fully hydrate and monitored for wellbeing during recovery. No adverse effects of the trials were evident.
    We used mixed model repeated measures analysis to identify factors affecting body temperatures of cane toads during the 40-min heating trials. Sex and body mass were used as covariates in the analysis with climate at each collection site (# consecutive months per year with average maximum temperature  > 30 °C and with  More

  • in

    Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps

    1.
    Costello, M. J. Biodiversity: The known, unknown, and rates of extinction. Curr. Biol. 25(9), 368–371 (2015).
    Google Scholar 
    2.
    Fontaine, B. et al. New species in the Old World: Europe as a frontier in biodiversity exploration, a test bed for 21st century taxonomy. PLoS ONE 7, 5 (2012).
    Google Scholar 

    3.
    Strauss, S. Y. & Irwin, R. E. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu. Rev. Ecol. Evol. Syst. 35, 435–466 (2004).
    Google Scholar 

    4.
    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31(1), 67–80 (2016).
    PubMed  Google Scholar 

    5.
    Burrascano, S. et al. Congruence across taxa and spatial scales: Are we asking too much of species data?. Glob. Ecol. Biogeogr. 27, 980–990 (2018).
    Google Scholar 

    6.
    Lelli, C. et al. Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manag. 298, 27–38 (2019).
    Google Scholar 

    7.
    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 14(1), 19–28 (2011).
    ADS  PubMed  Google Scholar 

    8.
    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30(3), 279–338 (1960).
    MathSciNet  Google Scholar 

    9.
    Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21(2–3), 213–251 (1972).
    Google Scholar 

    10.
    Tuomisto, H. A diversity of beta diversities: sStraightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33(1), 2–22 (2010).
    Google Scholar 

    11.
    Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33(1), 23–45 (2010).
    Google Scholar 

    12.
    Ellison, A. M. Partitioning diversity 1. Ecology 91(7), 1962–1963 (2010).
    PubMed  Google Scholar 

    13.
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19(1), 134–143 (2010).
    Google Scholar 

    14.
    Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 21(7), 760–771 (2012).
    Google Scholar 

    15.
    Podani, J. & Schmera, D. A new conceptual and methodological framework for exploring and explaining pattern in presence–absence data. Oikos 120, 1625–1638 (2011).
    Google Scholar 

    16.
    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16(8), 951–963 (2013).
    PubMed  Google Scholar 

    17.
    Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3(5), 808–812 (2012).
    Google Scholar 

    18.
    Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27(1), 96–109 (2018).
    Google Scholar 

    19.
    Si, X., Baselga, A. & Ding, P. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE 10(5), e0127692 (2015).
    PubMed  PubMed Central  Google Scholar 

    20.
    Da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernández, M. I. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24(9), 1277–1290 (2018).
    Google Scholar 

    21.
    Sanders, N. J. & Rahbek, C. The patterns and causes of elevational diversity gradients. Ecography 35(1), 1–3 (2012).
    Google Scholar 

    22.
    Willig, M. R. & Presley, S. J. The spatial configuration of taxonomic biodiversity along a tropical elevational gradient: α-, β-, and γ-partitions. Biotropica 51(2), 104–116 (2019).
    Google Scholar 

    23.
    Fontana, V. et al. Decomposing the land-use specific response of plant functional traits along environmental gradients. Sci. Total Environ. 599, 750–759 (2017).
    ADS  PubMed  Google Scholar 

    24.
    Viterbi, R. et al. Patterns of biodiversity in the northwestern Italian Alps: A multi-taxa approach. Commun. Ecol. 14(1), 18–30 (2013).
    Google Scholar 

    25.
    Leingärtner, A., Krauss, J. & Steffan-Dewenter, I. Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia 175(2), 613–623 (2014).
    ADS  PubMed  Google Scholar 

    26.
    Chatzaki, M., Lymberakis, P., Markakis, G. & Mylonas, M. The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: Species richness, activity and altitudinal range. J. Biogeogr. 32(5), 813–831 (2005).
    Google Scholar 

    27.
    Nascimbene, J. & Marini, L. Epiphytic lichen diversity along elevational gradients: Biological traits reveal a complex response to water and Energy. J. Biogeogr. 42, 1222–1232 (2015).
    Google Scholar 

    28.
    Spitale, D. The interaction between elevational gradient and substratum reveals how bryophytes respond to the climate. J. Veg. Sci. 27(4), 844–853 (2016).
    Google Scholar 

    29.
    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42(9), 1776–1786 (2015).
    PubMed  PubMed Central  Google Scholar 

    31.
    Paknia, O. & Sh, H. R. Geographical patterns of species richness and beta diversity of Larentiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. J. Insect Conserv. 19(4), 729–739 (2015).
    Google Scholar 

    32.
    Tello, J. S. et al. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS ONE 10(3), e0121458 (2015).
    PubMed  PubMed Central  Google Scholar 

    33.
    Steinwandter, M., Rief, A., Scheu, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 (2018).
    Google Scholar 

    34.
    Hilpold, A. et al. Decline of rare and specialist species across multiple taxonomic groups after grassland intensification and abandonment. Biodivers. Conserv. 27(14), 3729–3744 (2018).
    Google Scholar 

    35.
    Lasen, C. & Wilhalm, T. Natura-2000-Lebensräume in Südtirol (Abteilung Natur und Landschaft, Autonome Provinz Bozen-Südtirol, 2004).
    Google Scholar 

    36.
    Pollard, E. & Yates, T. J. Monitoring butterflies for ecology and conservation: The British butterfly monitoring scheme (Springer Science & Business Media, Berlin, 1994).
    Google Scholar 

    37.
    Elzinga, C. L., Salzer, D. W., Willoughby, J. W. & Gibbs, J. P. Monitoring plant and animal populations (Blackwell, Oxford, 2001).
    Google Scholar 

    38.
    Pascher, K. et al. Kartierhandbuch zur Biodiversitätserfassung im Agrarraum: Gefäßpflanzen, Tagfalter, Heuschrecken, sowie Zuordnung von Landschaftsstrukturen zu ausgewählten Biotoptypen. Forschungsbericht im Auftrag der Bundesministerien für Gesundheit, Sektion II und Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (2009).

    39.
    Schindler, S. et al. Österreichisches Biodiversitätsmonitoring (ÖBM) – Kulturlandschaft: Konzept für die Erfassung von Status und Trends der Biodiversität (2017)

    40.
    Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 1–21 (1963).
    Google Scholar 

    41.
    Laub, C. A., Youngman, R. R., Love, K. & Mize, T. Using pitfall traps to monitor insect activity (Virginia Tech, Blacksburg, 2009).
    Google Scholar 

    42.
    Churchill, T. B. & Arthur, J. M. Measuring spider richness: Effects of different sampling methods and spatial and temporal scales. J. Insect Conserv. 3(4), 287–295 (1999).
    Google Scholar 

    43.
    Schlick-Steiner, et al. Assessing ant assemblages: Pitfall trapping versus nest counting (Hymenoptera, Formicidae). Insect. Soc. 53, 274–281 (2006).
    Google Scholar 

    44.
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Google Scholar 

    45.
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7(12), 1451–1456 (2016).
    Google Scholar 

    46.
    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93(12), 2533–2547 (2012).
    PubMed  Google Scholar 

    47.
    Hixon, G., Thompson, C. & Bichteler, A. drsmooth: Dose-Response Modeling with Smoothing Splines. R package version 1.9.0 (2015).

    48.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv preprint, arXiv:1406.5823 (2014).

    49.
    Lawrence Lodge, R. H. E. et al. Spatial autocorrelation in plant communities: Vegetation texture versus species composition. Ecography 30(6), 801–811 (2007).
    Google Scholar 

    50.
    Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).
    PubMed  Google Scholar 

    51.
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 

    52.
    R Core Team R: A language and environment for statistical computing.https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2019).

    53.
    RStudio Team RStudio: Integrated Development for R. https://www.rstudio.com/ (RStudio, Inc., Boston, 2019).

    54.
    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453(7192), 216–2019 (2008).
    ADS  PubMed  Google Scholar 

    55.
    Nunes, C. A., Braga, R. F., Figueira, J. E. C., de Siqueira Neves, F. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 11(6), e0157442 (2016).
    PubMed  PubMed Central  Google Scholar 

    56.
    Ah-Peng, C. et al. Bryophyte diversity and range size distribution along two altitudinal gradients: Continent vs. island. Acta Oecol. 42, 58–65 (2012).
    ADS  Google Scholar 

    57.
    Hernández-Hernández, R. et al. Scaling α-and β-diversity: Bryophytes along an elevational gradient on a subtropical oceanic Island (La Palma, Canary Islands). J. Veg. Sci. 28(6), 1209–1219 (2017).
    Google Scholar 

    58.
    Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8(2), 224–239 (2005).
    Google Scholar 

    59.
    Perillo, L. N., de Siqueira Neves, F., Antonini, Y. & Martins, R. P. Compositional changes in bee and wasp communities along Neotropical mountain altitudinal gradient. PLoS ONE 12(7), e0182054 (2017).
    PubMed  PubMed Central  Google Scholar 

    60.
    Descombes, P., Vittoz, P., Guisan, A. & Pellissier, L. Uneven rate of plant turnover along elevation in grasslands. Alpine Bot. 127(1), 53–63 (2017).
    Google Scholar 

    61.
    Schellenberger Costa, D. et al. Plant niche breadths along environmental gradients and their relationship to plant functional traits. Divers. Distrib. 24(12), 1869–1882 (2018).
    Google Scholar  More

  • in

    A multilevel statistical toolkit to study animal social networks: the Animal Network Toolkit Software (ANTs) R package

    Data input
    ANTs can process two types of data: (1) data representing the directed interactions of individuals (e.g. grooming) or their associations (e.g. proximity), and (2) data representing individual attributes (sex, age, dominance rank, etc.).
    Interactions and association data can be input in the form of a matrix or a data frame(s). The data frame structure depends on the type of protocol the user wants to follow. For network permutations, data frames must be in an edge list format with at least two columns, one of which indicates the actor and the other the receiver. An additional column may indicate weights of interactions. These data frames allow the user to directly input data collected in the field. For the data stream permutation approach, data can be presented in data frame format. In this case, data frames are not edge lists because they contain additional information in extra columns. For data stream permutations concerning focal observations16, i.e. data obtained from following a specific individual over a certain amount of time23, two extra columns are required in addition to those indicating the givers and receivers of a behaviour: one indicating the focal individual and another indicating the corresponding focal session. For data stream permutations on group follow observations6, i.e. recording individual associations at specific locations and time, data frames have to be in a ‘linear mode’, identical to SOCPROG (i.e. in which each line corresponds to the observation of an individual) with additional columns indicating the different ‘control’ factors (see “Permutations” section) such as the date, time of day or the geographical location associated with the interaction occurred.
    It is also possible to use data frames for individual attributes (sex, age, dominance rank, hormone levels, etc.). These must be in a data frame format, with a row for every individual present in the data of individual interactions or associations. Each line represents the attribute(s) of a single individual.
    Inputting these two types of data (interactions/associations and individual attributes) may enable the user to (1) permute and/or compute network measures on data representing individuals’ interactions or associations and (2) store node network measures with ANTs functions in the data frame(s) of individual attributes. This makes it possible to study how these node network measures are related to individuals’ attributes.
    When performing the multiple networks analytical protocol, the user has to create an R list object where each element of the list stores interaction/association data representing a single network (list of data of interactions or associations). This list must contain a unique data format of interactions/associations (i.e. only edge lists, associations of group follow or associations of focal sampling). Optionally, the user can create a second R list object with the attributes of the individuals present in the corresponding list of interactions/associations (e.g. the data frame of individual attributes in element 1 corresponds to the individuals present in the list of interactions/associations in element 1, etc.). This way, permutations are generated independently in each network (e.g. 1,000 permutations in network 1, 1,000 permutations in network 2, etc.).
    Testing data collection robustness
    One of the main issues with regard to social network analysis and the study of animal groups is the quality of data collection (time of observation), as observation biases (e.g. some individuals are more frequently observed than others) can generate unreliable statistical results24, 25. Usually, data collection protocol has to be planned for the needs of the intended SNA before collecting data. The following questions must be answered: Do I observe all group members equally? Am I using the best method to limit the disturbance of animal behaviour and interactions? The choice of observation period is also a key factor, as some interindividual associations or interactions are rare and/or difficult to observe over the short term but are still important to attain the objectives of the study. However, this not always the case as scientists often collect data before carrying out analyses. ANTs meets the needs of these differing approaches by offering two different protocols to assess data collection robustness:
    1.
    Lusseau, et al.24 protocol to assess the robustness of node measures through bootstrapping.

    2.
    Balasubramaniam, et al.25 protocol to assess the robustness of global measures through observation deletion simulations.

    For further information on the use of these different protocols, please refer to ANTs R documentation concerning functions in the ‘sampling.’ family.
    Controlling for time heterogeneity
    It is sometimes difficult to obtain the same number of observations per individual. ANTs enables users to control for time heterogeneity in different ways through the use of different association indices, namely the generalised affiliation index, the simple ratio index, the half-weight index or the square root index6. For further instructions on the use of these different indices, please refer to ANTs R documentation concerning the functions in the ‘assoc.’ family.
    Computing network measures
    Three types of network measures can be identified depending on the level of organisation: global measures, polyadic measures, and node measures. In ANTs, all these measures are grouped under the function family ‘met’. All the node measures available in ANTs are synthesised in Table 1. The measures we proposed in the package ANTs are the ones commonly used in Animal Social Network Analyses6, 22, 26,27,28.
    Global measures (e.g. network diameter) are used to study the overall network and obtain valuable information regarding network efficiency, resilience, clusterisation, etc. Polyadic measures (e.g. assortativity) allow the study of interaction patterns between individuals. These measures provide information about how individuals interact according to their attributes. Node measures (e.g. strength) are the most frequently used measures in animal research. Among other things, node measures inform users about the centrality of an individual, the number of alters it has and/or its activity according to individual attributes, and reveal patterns that are common to individuals with similar attributes. By giving access to global, polyadic and node measures, we aim to enable users to adopt a multilevel approach and thereby understand the centrality of individuals in a group, the patterns of interaction between them and the impact of these two levels on the global network structure22, 29 .
    For more details on the different types of measures, their mathematical formula, interpretation, limitations and past use in animal research, see Whitehead6, Sueur, et al.26, Sosa, et al.22, Sosa29 and refer to ANTs R documentation .
    Permutations
    When considering data robustness, permutations can be used to avoid observation biases and ensure the reliability of results obtained by SNA (i.e. results that have no type I and type II errors). Indeed, with the exception of some specific cases such as experiments in social insects, where individuals may be tracked continuously, it is usually assumed when examining inter-individual interactions within a group or a population that neither all the interactions nor all individuals are observed, that the times of observation vary from one individual to another, and that the data collected are intrinsically dependent. For these reasons, permutation tests are needed to control for data independency before performing inferential statistical tests, as inferential statistical tests assume data independency16.
    The Null Model (NM) approach via permutation is one of the many current possibilities to test statistical hypotheses15. It allows users to perform analyses by creating random data sets from the observed data. The observed measure of interest X (e.g. coefficient of correlation) is compared to a posterior distribution obtained from the random data sets, and assesses whether X is significantly different from the random distribution by calculating the proportion of random values that differ from the observed value. The NM approach can be applied in different ways. ANTs allows for this by adapting the permutations (pre- or network permutations) according to the type of data collected ( i.e. pre- or network permutations for data on associations and interactions respectively) and the research question (i.e. permuting nodes when examining individual network measures or permuting links when examining individual polyadic or global measures).
    Data stream and node network permutations are two of the most commonly used permutation methods to build null models in animal social network analysis. A description of these methods is presented by Puga-Gonzalez et al. (submitted). Data stream permutations were initially used to test whether individuals in a social population have a preference for association with certain partners rather than with others27, 30. One of the advantages of this method is that it can control for different factors such as location. It is therefore possible to test whether non-random associations are due to individuals’ social preference or result from a preference for the same habitat or location27.
    Node network permutation is the other commonly used method to test network-related hypotheses in animal research. Node permutations have mainly been used to compare two matrices (or networks) involving the same group of individuals, i.e. matrix correlations. In this case, the values entered in the cell of the matrices are (un)directed behaviours (e.g. grooming or playing). In contrast to the gambit of the group, (un)directed behaviours are usually collected via focal sampling, scan sampling, or ad libitum sampling23. During node permutations, the identity of the nodes is redistributed at each permutation whilst the node metric is kept constant. This allows users to test whether a specific network metric is associated with a specific node attribute (e.g. whether females groom more than males), or whether behaviours are reciprocated or directed to individuals with a specific trait (e.g. grooming directed up the dominance hierarchy). All of the permutation approaches available in ANTs are in the family function ‘perm’ with two subclasses, ‘perm.ds’ and ‘perm.net’ for data stream and network permutations, respectively. ANTs can perform data stream permutations for group follow and focal sampling data collection protocols. Network permutations can be performed on (1) node label(s) (with labels’ dependency maintained or not), (2) links, (3) link weights, and (4) link weights swap between categories. Among those different types of permutations, node label (ESM Appendix 1) and data stream (ESM Appendix 2) permutations are probably the most commonly used standard approaches in animal network analysis. For this reason, we developed a specific workflow to allow their use (ESM Appendix 1 and ESM Appendix 2) in ANTs for the study of single31 or multiple networks9, 13 (for network comparisons or time-aggregated analyses). To date, ANTs is the only software permitting the use of these approaches in an all-in-one environment and their application for the analysis of multiple networks.
    For more details on the different permutations and their applications according to the data collection protocol, the type of behavioural data collected and the research question, see Bejder, et al.30, Whitehead27, Whitehead, et al.32, Croft, et al.28, Farine16,Momigliano, et al.33, Sosa29, ANTs R documentation, ESM Appendix 1 and ESM Appendix 2.
    Statistical tests based on data permutations
    All the statistical tests available in ANTs are in the family function ‘stat’. The available tests are correlation test ‘stat.cor’, t-test ‘stat.t’, Linear Model (LM) ‘stat.lm’, Generalised Linear Model (GLM) ‘stat.glm’, Generalised Linear Mixed Models (GLMMs) ‘stat.glmm’, assortativity test ‘stat.assortativity’, TaurK correlation ‘stat.Taurk’ and deletion simulation ‘stat.deletion’. ANTs stat. function returns an object with the posterior distribution of the variable tested.
    1.
    Once the permutation test has been performed, the function ‘ant’, allows the user to obtain the statistical results from any output object of any function ‘stat’. The ‘ant’ function returns a data frame with statistics specific to the type of statistical test run. However, some of these statistics are common to all tests, namely the P-values on the right or left of the distribution and the two-side p-values.

    2.
    Measures of the ‘effect size’ of the posterior distribution according to the statistics of interest: 95% confidence interval and the mean of the distribution a posteriori (see Farine and Whitehead34). The histograms of the post-distribution of the statistics of interest obtained from the permutations.

    Network visualization
    ANTs allows network visualisation with a data frame containing node information and a matrix of interactions/associations. Nodes and links can be parametrised to modify their size and colour and highlight differences (e.g. females showing higher eigenvectors than males). Network layouts are currently based on Barnes Hut repulsion, Hierarchical Repulsion and Force Atlas 2. For more details on network visualisation, see ANTs function ‘net.vis’ in the package instructions document. These layouts are commonly used in animal social network analyses9, 35,36,37 as for instance, Force Atlas 2 arranges the visualisation graph with the distance between nodes is inversely proportional to their association, giving a nice view of who is close to whom. More

  • in

    Effects of the brown algae Sargassum horneri and Saccharina japonica on survival, growth and resistance of small sea urchins Strongylocentrotus intermedius

    Sea urchins
    Experimental sea urchins were produced in November 2018, fed Ulva pertusa ad libitum for ~ 2 months until the test diameter reached 0.3–0.4 cm diameter and subsequently fed S. japonica for culture1,4. Three hundred healthy S. intermedius (~ 3 cm of test diameter) were randomly selected from an aquaculture farm in Huangnichuan, Dalian (121° 45′ N, 38° 82′ E) and then were transported to the Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture at Dalian Ocean University (121° 56′ N, 38° 87′ E) on 9 July 2019. Sea urchins were maintained in a large fiberglass tank (length × width × height: 180 × 100 × 80 cm) of the recirculating system (Huixin Co., Dalian, China) to acclimatize to laboratory conditions and fed S. japonica ad libitum for 1 week with aeration. Water quality parameters were measured daily. Water temperature was 23.55 ± 0.07 °C, pH 7.72 ± 0.02 and salinity 33.76 ± 0.04. They were then fasted for another week until the experiment began.
    Test diameter, wet body weight and wet gonad weight were evaluated for the initial conditions of sea urchins before the experiments started (N = 20 for test diameter and wet body weight; N = 10 for wet gonad weight).
    Crude protein, fiber, fat and ash of S. horneri and S. japonica
    Samples were taken from each dried brown alga to investigate their organic composition (crude protein, crude fiber and crude fat) and ash on 20 August 2019 (N = 3). Semi-micro Kjeldahl nitrogen was used to determine the crude protein concentration of the dried brown algae44. In order to measure the crude fiber concentration of brown algae, about 10 g of each sample of the dried brown algae was boiled with a mixed solution (1.25% dilute acid and dilute alkali) for 30 min and ashed at 550 °C to remove the minerals45. Five grams of each dried sample and 15 mL petroleum ether were added to the Soxhlet extractor and refluxed at constant temperature (45 ± 1 °C) for eight hours to assess the crude fat concentration of the brown algae46. To investigate the ash concentration of the brown algae, approximate two g dried samples were placed in a constant weight fritted glass and burned in a muffle furnace (M110, Thermo CO., U.S) at 550 °C for 48 h45.
    Experiment I
    Experimental design
    Diet was the experimental factor, either S. horneri or S. japonica. Fresh S. horneri were collected from a farm in Huangnichuan Dalian (121° 45′ N, 38° 82′ E) and S. japonica from Dalian Bay (120° 37′ E 38° 56′ N) in July 2019. Individuals were fed dried S. horneri (experimental group) and dried S. japonica (control group) ad libitum for ~ 9 weeks during the experiment (from 23 July 2019 to 25 September 2019). One large fiberglass tank was used for each experimental treatment. One hundred sea urchins were haphazardly chosen and put into 100 individual cylindrical cages (length × width × height: 10 × 10 × 20 cm; 1.5 cm of mesh size) in each tank (length × width × height: 150 × 100 × 60 cm) of the recirculating system (Huixin Co., Dalian, China) with aeration, according to the experimental design. Diseased sea urchins were removed timely from the tanks to avoid the potential spread of infectious diseases in experimental treatments and were transported into new tanks (length × width × height: 75 × 45 × 35 cm) for individual culture and observation following with the previous management.
    Water temperature was not controlled, ranging from 21.3 to 25.6 °C during the experiment. Water quality parameters were measured weekly as pH 7.59–7.85 and salinity 32.69–32.13. One-half of the seawater was renewed daily.
    Number of survived and diseased sea urchins
    Black-mouth disease refers to the perioral membrane turns black (Fig. 4A) with the decreased ability of attaching and feeding in sea urchins47. Sea urchin with spotting disease is indicated by the spotting lesions with red, purple or blackish color on the body wall followed by the detachment of local spines48 (Fig. 4B). The enlarging spotting lesions commonly cause ulceration on the body wall and finally result in death8. Sea urchin without disease performance is shown in Fig. 4C. The number of survived and diseased sea urchins (either black-mouth or spotting diseased) was recorded during the experiment.
    Figure 4

    The conceptual diagrams show the black-mouth disease (A), spotting disease (B) and without disease performance (C) of sea urchin as well as the devices for righting behavior (D) and Aristotle’s lantern reflex (E).

    Full size image

    Dried food consumption
    The measurement of food consumption was conducted for six consecutive days (from 7 August 2019 to 12 August 2019). The total supplemented and remained diets were weighed (G & G Co., San Diego, USA) after removing the water on their surface. The samples of uneaten diets were collected, weighed and dried for 4 days at 80 °C and then reweighed (N = 5). To avoid the loss of uneaten food, a fine silk net (mesh size 260 μm) was set outside the cage to collect the fragments of uneaten brown algae7.
    Dried food consumption was calculated as follows (according to Zhao et al.49 with some revisions):

    $$text{F } = {text{ W}}_{1}times ({1}-frac{{text{B}}_{text{s}}-{text{B}}_{text{u}}}{{text{B}}_{text{s}}}text{)}-{text{W}}_{2} times (1-frac{{text{C}}_{text{s}}-{text{C}}_{text{u}}}{{text{C}}_{text{s}}}text{)}$$

    F = dried food consumption (g), W1 = wet weight of total supplement diets (g), W2 = wet weight of total uneaten diets (g), Bs = wet weight of sample supplemented diets (g), Bu = dry weight of sample supplemented diets (g), Cs = wet weight of sample uneaten diets (g), Cu = dry weight of sample uneaten diets (g).
    Growth
    Test diameters, Aristotle’s lantern length were measured using a digital vernier caliper (Mahr Co., Ruhr, Germany). Body, Aristotle’s lantern and gut were weighted wet using an electric balance (G & G Co., San Diego, USA) on 25 September 2019 (N = 27 for test diameter and wet body weight; N = 6 for Aristotle’s lantern length, wet weight of Aristotle’s lantern and gut).
    Specific growth rate (SGR) was calculated according to the following formula:

    $${text{SGR}}text{ (}{%}text{)} , text{=}frac{ln{text{P}}_{2}-ln{text{P}}_{1}}{text{D}},times,{100}$$

    SGR = specific growth rate, P2 = final wet body weight, P1 = initial wet body weight, D = experimental duration.
    Gonad yield
    Gonads were carefully collected from each treatment and weighed using an electric balance (G & G Co., San Diego, USA) on 25 September 2019 (N = 6). Gonad index was calculated according to the following formula:

    $$text{GI } (%)= text{ } frac{text{GW}}{{text{BW}}},times,{100}$$

    GI = gonad index, GW = wet gonad weight, BW = wet body weight.
    Gonadal development
    One of five pieces of each gonad was preserved in the Bouin’s solution (saturated picric acid solution: formaldehyde: glacial acetic acid = 15: 5: 1) for 48 h between the treatments (N = 6). Standard histology technique, including embedment, infiltration, section and stain, was performed to make the gonad tissue slices50. Sections were classified according to the stage of development of germinal cells and nutritive phagocytes: stage I, recovering; stage II, growing; stage III, premature; stage IV, mature; stage V, partly spawned; stage VI, spent51,52,53.
    Experiment II
    Experimental design
    Experiment II lasted for 4 weeks (from 25 September 2019 to 23 October 2019). Eighty healthy sea urchins were haphazardly selected from each treatment at the end of experiment I. They were then distributed into 80 cylindrical cages (5 × 10 × 10 cm) in each fiberglass tanks (length × width × height: 77.5 × 47.0 × 37.5 cm) of the temperature-controlled system (Huixin Co., Dalian, China) with aeration in both treatments. Sea urchins were maintained at 23.5 °C for 2 weeks (the average water temperature of experiment I) to eliminate the past thermal history, following the previous diet strategy of experiment I. Water quality was recorded daily as pH 7.83–7.85 and salinity 32.44–32.62. One-third of the seawater was renewed daily.
    Subsequently, to investigate whether S. horneri and S. japonica contribute to the resistance abilities of small S. intermedius at moderately elevated temperatures, 40 individuals were haphazardly chosen from each treatment and placed into 40 cylindrical cages (5 × 10 × 10 cm) in each tank (length × width × height: 77.5 × 47.0 × 37.5 cm) of a temperature-controlled system (Huixin Co., Dalian, China) with aeration for both groups on 9 October 2019. They were subsequently exposed to the moderately elevated temperatures (rose from 23.5 to 26.5 °C at a rate of 0.5 °C per day and maintained at 26.5 °C for 1 week), according to the records of water temperature in Heishijiao sea area (~ 2 m water depth, 38° 51′ N, 121° 33′ E) in the summer of 2017 and 2018 (Fig. 5). Righting behavior, tube feet extension and Aristotle’s lantern reflex were assessed on 23 October 2019.
    Figure 5

    Daily records of the water temperature in Heishijiao sea area, Dalian (~ 2 m water depth, 38° 51′ N, 121° 33′ E) in the summers of 2017 and 2018.

    Full size image

    Similarly, to explore the effects of S. horneri and S. japonica on the resistance abilities of small S. intermedius under acute changes of water temperature, another 40 individuals were randomly selected and placed into 40 cylindrical cages (5 × 10 × 10 cm) in each tank (length × width × height: 77.5 × 47.0 × 37.5 cm) of the temperature-controlled system (Huixin Co., Dalian, China) with aeration for both treatments on 9 October 2019. The water temperature was set at 23.5 °C. A tank of seawater was prepared at 15 °C. To simulate the changes of water temperature in Haiyang island near Dalian (39° 03′ N, 123° 09′ E) where water temperature frequently fluctuates from 22 to 16 °C instantly by the cold water mass17, sea urchins were transferred directly from 23.5 to 15 °C, maintained at 15 °C for an hour and subsequently quickly returned to 23.5 °C for another hour to finish one cycle of the acute change of water temperature. After four cycles, righting behavior, tube feet extension and Aristotle’s lantern reflex of sea urchins were observed.
    Righting behavior
    Sea urchins were placed with the aboral side down on the bottom of an experimental tank (length × width × height: 60 × 40 × 16 cm, Fig. 4D). Righting response time is the time required for individuals in the inverted posture to right themselves with the aboral side up22. The righting response time in seconds was recorded during 10 min. If individuals did not right themselves within 10 min, the time was counted as 600 s (N = 15).
    Tube feet extension
    The method of assessing tube feet extension was established according to You et al.27, with some revisions. Sea urchins were maintained in a tank (length × width × height: 12 × 10 × 10 cm) with fresh seawater for ~ 5 min before the observation (N = 15). The subjective assessment of tube feet extension was evaluated by a well-trained team (5 persons) that was familiar with tube feet extension analysis of sea urchins. The ranking method was quantified based on the quantity and length of tube foot.
    Tube feet extension (rating 1–5):

    1 = extremely abnormal (not extending)

    2 = severe abnormality (extremely low quantity and extremely short length)

    3 = moderate anomaly (low quantity and short length)

    4 = mild abnormality (slight decrease in quantity and length)

    5 = normal (normal quantity and length)

    Aristotle’s lantern reflex
    A simple device, which has two small compartments (length × width × height: 4.8 × 5.6 × 4.5 cm) with a food film on the bottom, was used to measure Aristotle’s lantern reflex according to our previous study29. Food film was made by a mixture of ~ 2.5 g agar and 50 ml seawater in order to avoid the potential impacts of the food palatability on sea urchins. The number of Aristotle’s lantern reflex were counted within 5 min using a digital camera (Canon Co., Shenzhen, China) under the device (N = 7 for sea urchins fed S. horneri and N = 10 for individuals fed S. japonica under moderately elevated temperatures; N = 10 for both groups under acutely changed temperatures; Fig. 4E).
    Statistical analysis
    Normal distribution and homogeneity of variance of the data were analyzed using the Kolmogorov–Smirnov test and Levene test, respectively. The number of survived and diseased S. intermedius were compared using the Fisher′s exact test. Food consumption was analyzed using one-way repeated measured ANOVA. Kruskal–Wallis test was performed to compare the difference of righting behavior and tube feet extension between the treatments and also used to analyze Aristotle’s lantern reflex under acutely changed temperatures. Independent-samples t test was carried out to compare the difference between the final and initial conditions of sea urchins. Test diameter, wet body weight, SGR, Aristotle’s lantern length, wet Aristotle’s lantern weight, wet gut weight, gonad index and Aristotle’s lantern reflex (under moderately elevated temperatures) were analyzed using the independent-samples t test. All data analyses were performed using SPSS 19.0 statistical software. A probability level of P  More

  • in

    Materials and pathways of the organic carbon cycle through time

    1.
    Falkowski, P. G. & Godfrey, L. V. Electrons, life and the evolution of Earth’s oxygen cycle. Philos. Trans. R. Soc. B 363, 2705–2716 (2008).
    Google Scholar 
    2.
    Rothman, D. H. Global biodiversity and the ancient carbon cycle. Proc. Natl Acad. Sci. USA 98, 4305–4310 (2001).
    Google Scholar 

    3.
    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. B 361, 931–950 (2006).
    Google Scholar 

    4.
    Galvez, M. E. & Pubellier, M. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 276–312 (Cambridge Univ. Press, 2019).

    5.
    Catling, D. C., Zahnle, K. J. & McKay, C. Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293, 839–843 (2001).
    Google Scholar 

    6.
    Derry, L. in Treatise on Geochemistry 2nd edn, Vol. 12, 239–249 (Elsevier, 2014).

    7.
    Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).
    Google Scholar 

    8.
    Rothman, D. H. Thresholds of catastrophe in the Earth system. Sci. Adv. 3, e1700906 (2017).
    Google Scholar 

    9.
    Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).
    Google Scholar 

    10.
    del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).
    Google Scholar 

    11.
    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).
    Google Scholar 

    12.
    Honjo, S. et al. Understanding the role of the biological pump in the global carbon cycle: an imperative for ocean science. Oceanography 27, 10–16 (2014).
    Google Scholar 

    13.
    Rosenwasser, S., Ziv, C., Creveld, S. G. v. & Vardi, A. Virocell metabolism: metabolic innovations during host–virus interactions in the ocean. Trends Microbiol. 24, 821–832 (2016).
    Google Scholar 

    14.
    Bidle, K. D. & Vardi, A. A chemical arms race at sea mediates algal host–virus interactions. Curr. Opin. Microbiol. 14, 449–457 (2011).
    Google Scholar 

    15.
    Hertkorn, N., Harir, M., Koch, B., Michalke, B. & Schmitt-Kopplin, P. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences 10, 1583–1624 (2013).
    Google Scholar 

    16.
    Druffel, E. R., Williams, P. M., Bauer, J. E. & Ertel, J. R. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. Oceans 97, 15639–15659 (1992).
    Google Scholar 

    17.
    Ridgwell, A. Evolution of the ocean’s “biological pump”. Proc. Natl Acad. Sci. USA 108, 16485–16486 (2011).
    Google Scholar 

    18.
    Hansell, D. A., Carlson, C. A., Repeta, D. J. & Schlitzer, R. Dissolved organic matter in the ocean: a controversy stimulates new insights. Oceanography 22, 202–211 (2009).
    Google Scholar 

    19.
    Engel, A., Thoms, S., Riebesell, U., Rochelle-Newall, E. & Zondervan, I. Polysaccharide aggregation as a potential sink of marine dissolved organic carbon. Nature 428, 929–932 (2004).
    Google Scholar 

    20.
    Raven, M. R. et al. Organic carbon burial during OAE2 driven by changes in the locus of organic matter sulfurization. Nat. Commun. 9, 3409 (2018).
    Google Scholar 

    21.
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).
    Google Scholar 

    22.
    Arrieta, J. M. et al. Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348, 331–333 (2015).
    Google Scholar 

    23.
    Hilton, R. G. Climate regulates the erosional carbon export from the terrestrial biosphere. Geomorphology 277, 118–132 (2017).
    Google Scholar 

    24.
    Milliman, J. D. & Syvitski, J. P. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 100, 525–544 (1992).
    Google Scholar 

    25.
    Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).
    Google Scholar 

    26.
    Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 115, 138–155 (2018).
    Google Scholar 

    27.
    Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).
    Google Scholar 

    28.
    Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E. & Fischer, W. W. Four hundred million years of silica biomineralization in land plants. Proc. Natl Acad. Sci. USA 112, 5449–5454 (2015).
    Google Scholar 

    29.
    Cermeño, P., Falkowski, P. G., Romero, O. E., Schaller, M. F. & Vallina, S. M. Continental erosion and the Cenozoic rise of marine diatoms. Proc. Natl Acad. Sci. USA 112, 4239–4244 (2015).
    Google Scholar 

    30.
    Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).
    Google Scholar 

    31.
    Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282, 451–473 (1982).
    Google Scholar 

    32.
    Cartapanis, O., Bianchi, D., Jaccard, S. L. & Galbraith, E. D. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima. Nat. Commun. 7, 10796 (2016).
    Google Scholar 

    33.
    Hedges, J. I. & Keil, R. G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).
    Google Scholar 

    34.
    Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450–453 (2015).
    Google Scholar 

    35.
    Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4, 401–423 (2012).
    Google Scholar 

    36.
    Husson, J. M. & Peters, S. E. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir. Earth Planet. Sci. Lett. 460, 68–75 (2017).
    Google Scholar 

    37.
    Hilton, R. G. et al. Climatic and geomorphic controls on the erosion of terrestrial biomass from subtropical mountain forest. Global Biogeochem. Cycles 26, GB3014 (2012).
    Google Scholar 

    38.
    Jaccard, S. L., Galbraith, E. D., Frölicher, T. L. & Gruber, N. Ocean (de)oxygenation across the last deglaciation: insights for the future. Oceanography 27, 26–35 (2014).
    Google Scholar 

    39.
    Anderson, R. F. et al. Deep-sea oxygen depletion and ocean carbon sequestration during the last ice age. Global Biogeochem. Cycles 33, 301–317 (2019).
    Google Scholar 

    40.
    Vonk, J. E. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013).
    Google Scholar 

    41.
    Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nat. Geosci. 5, 74–79 (2012).
    Google Scholar 

    42.
    Lasaga, A. C. & Ohmoto, H. The oxygen geochemical cycle: dynamics and stability. Geochim. Cosmochim. Acta 66, 361–381 (2002).
    Google Scholar 

    43.
    Caves, J. K., Jost, A. B., Lau, K. V. & Maher, K. Cenozoic carbon cycle imbalances and a variable weathering feedback. Earth Planet. Sci. Lett. 450, 152–163 (2016).
    Google Scholar 

    44.
    Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).
    Google Scholar 

    45.
    Evans, B. W. Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?). Geology 38, 879–882 (2010).
    Google Scholar 

    46.
    Galvez, M. E. Glaciological window into the pace of the organic carbon cycle. Preprint at https://arxiv.org/abs/2005.02806 (2020).

    47.
    Hilton, R. G., Galy, A. & Hovius, N. Riverine particulate organic carbon from an active mountain belt: importance of landslides. Global Biogeochem. Cycles 22, GB1017 (2008).
    Google Scholar 

    48.
    Hilton, R. G. et al. Erosion of organic carbon in the Arctic as a geological carbon dioxide sink. Nature 524, 84–87 (2015).
    Google Scholar 

    49.
    Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).
    Google Scholar 

    50.
    Bao, R. et al. Tectonically-triggered sediment and carbon export to the Hadal zone. Nat. Commun. 9, 121 (2018).
    Google Scholar 

    51.
    Clift, P. D. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).
    Google Scholar 

    52.
    Gulick, S. P. S. et al. Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska. Proc. Natl Acad. Sci. USA 112, 15042–15047 (2015).
    Google Scholar 

    53.
    Colwell, F. S. & D’Hondt, S. Nature and extent of the deep biosphere. Rev. Mineral. Geochem. 75, 547–574 (2013).
    Google Scholar 

    54.
    Miyakawa, A., Kinoshita, M., Hamada, Y. & Otsubo, M. Thermal maturity structures in an accretionary wedge by a numerical simulation. Prog. Earth Planet. Sci. 6, 8 (2019).
    Google Scholar 

    55.
    Boudreau, B. P. & Ruddick, B. R. On a reactive continuum representation of organic matter diagenesis. Am. J. Sci. 291, 507–538 (1991).
    Google Scholar 

    56.
    Forney, D. & Rothman, D. Inverse method for estimating respiration rates from decay time series. Biogeosciences 9, 3601–3612 (2012).
    Google Scholar 

    57.
    Canfield, D. E. et al. Pathways of organic carbon oxidation in three continental margin sediments. Mar. Geol. 113, 27–40 (1993).
    Google Scholar 

    58.
    Arndt, S. et al. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth Sci. Rev. 123, 53–86 (2013).
    Google Scholar 

    59.
    Siskin, M. & Katritzky, A. R. Reactivity of organic compounds in hot water: geochemical and technological implications. Science 254, 231–237 (1991).
    Google Scholar 

    60.
    Helgeson, H. C., Richard, L., McKenzie, W. F., Norton, D. L. & Schmitt, A. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochim. Cosmochim. Acta 73, 594–695 (2009).
    Google Scholar 

    61.
    Mastalerz, M., Schimmelmann, A., Drobniak, A. & Chen, Y. Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull. 97, 1621–1643 (2013).
    Google Scholar 

    62.
    Petrenko, V. V. et al. Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature 548, 443–446 (2017).
    Google Scholar 

    63.
    Etiope, G., Lassey, K. R., Klusman, R. W. & Boschi, E. Reappraisal of the fossil methane budget and related emission from geologic sources. Geophys. Res. Lett. 35, L09307 (2008).
    Google Scholar 

    64.
    Fuchs, S., Williams-Jones, A. E., Jackson, S. E. & Przybylowicz, W. J. Metal distribution in pyrobitumen of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: evidence for liquid hydrocarbon ore fluids. Chem. Geol. 426, 45–59 (2016).
    Google Scholar 

    65.
    Galvez, M. et al. Micro- and nano-textural evidence of Ti(-Ca-Fe) mobility during fluid–rock interactions in carbonaceous lawsonite-bearing rocks from New Zealand. Contrib. Mineral. Petrol. 164, 895–914 (2012).
    Google Scholar 

    66.
    Littke, R., Klussmann, U., Krooss, B. & Leythaeuser, D. Quantification of loss of calcite, pyrite, and organic matter due to weathering of Toarcian black shales and effects on kerogen and bitumen characteristics. Geochim. Cosmochim. Acta 55, 3369–3378 (1991).
    Google Scholar 

    67.
    Aarnes, I., Fristad, K., Planke, S. & Svensen, H. The impact of host-rock composition on devolatilization of sedimentary rocks during contact metamorphism around mafic sheet intrusions. Geochem. Geophys. Geosyst. 12, Q10019 (2011).
    Google Scholar 

    68.
    Beyssac, O., Rouzaud, J.-N., Goffé, B., Brunet, F. & Chopin, C. Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study. Contrib. Mineral. Petrol. 143, 19–31 (2002).
    Google Scholar 

    69.
    Mann, P., Gahagan, L. & Gordon, M. B. Tectonic setting of the world’s giant oil fields. World Oil 222, 78–84 (2001).
    Google Scholar 

    70.
    Beyssac, O., Pattison, D. R. & Bourdelle, F. Contrasting degrees of recrystallization of carbonaceous material in the Nelson aureole, British Columbia and Ballachulish aureole, Scotland, with implications for thermometry based on Raman spectroscopy of carbonaceous material. J. Metamorph. Geol. 37, 71–95 (2019).
    Google Scholar 

    71.
    Oohashi, K., Hirose, T. & Shimamoto, T. Shear-induced graphitization of carbonaceous materials during seismic fault motion: experiments and possible implications for fault mechanics. J. Struct. Geol. 33, 1122–1134 (2011).
    Google Scholar 

    72.
    Rajesh, V., Arai, S. & Satish-Kumar, M. Origin of graphite in glimmerite and spinellite in Achankovil Shear Zone, southern India. J. Mineral. Petrol. Sci. 104, 407–412 (2009).
    Google Scholar 

    73.
    Ortega, L. et al. The graphite deposit at Borrowdale (UK): a catastrophic mineralizing event associated with Ordovician magmatism. Geochim. Cosmochim. Acta 74, 2429–2449 (2010).
    Google Scholar 

    74.
    Galvez, M. E. et al. Graphite formation by carbonate reduction during subduction. Nat. Geosci. 6, 473–477 (2013).
    Google Scholar 

    75.
    Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472, 209–212 (2011).
    Google Scholar 

    76.
    Johansson, K. O., Head-Gordon, M. P., Schrader, P. E., Wilson, K. R. & Michelsen, H. A. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science 361, 997–1000 (2018).
    Google Scholar 

    77.
    Atmani, L. et al. From cellulose to kerogen: molecular simulation of a geological process. Chem. Sci. 8, 8325–8335 (2017).
    Google Scholar 

    78.
    Galvez, M. E., Manning, C. E., Connolly, J. A. & Rumble, D. The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature. Earth Planet. Sci. Lett. 430, 486–498 (2015).
    Google Scholar 

    79.
    Connolly, J. A. D. & Cesare, B. C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites. J. Metamorph. Geol. 11, 379–388 (1993).
    Google Scholar 

    80.
    Connolly, J. A. D. & Galvez, M. E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth Planet. Sci. Lett. 501, 90–102 (2018).
    Google Scholar 

    81.
    Galvez, M. E., Connolly, J. A. D. & Manning, C. E. Implications for metal and volatile cycles from the pH of subduction zone fluids. Nature 539, 420–424 (2016).
    Google Scholar 

    82.
    O’Neill, H. S. C., Berry, A. J. & Mallmann, G. The oxidation state of iron in Mid-Ocean Ridge Basaltic (MORB) glasses: implications for their petrogenesis and oxygen fugacities. Earth Planet. Sci. Lett. 504, 152–162 (2018).
    Google Scholar 

    83.
    Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019).
    Google Scholar 

    84.
    Aarnes, I., Svensen, H., Connolly, J. A. D. & Podladchikov, Y. Y. How contact metamorphism can trigger global climate changes: modeling gas generation around igneous sills in sedimentary basins. Geochim. Cosmochim. Acta 74, 7179–7195 (2011).
    Google Scholar 

    85.
    Tomkins, A. G., Rebryna, K. C., Weinberg, R. F. & Schaefer, B. F. Magmatic sulfide formation by reduction of oxidized arc basalt. J. Petrol. 53, 1537–1567 (2012).
    Google Scholar 

    86.
    Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).
    Google Scholar 

    87.
    Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).
    Google Scholar 

    88.
    Bouchez, J. et al. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2. Geology 38, 255–258 (2010).
    Google Scholar 

    89.
    Hilton, R. G., Gaillardet, J., Calmels, D. & Birck, J.-L. Geological respiration of a mountain belt revealed by the trace element rhenium. Earth Planet. Sci. Lett. 403, 27–36 (2014).
    Google Scholar 

    90.
    Petsch, S. T., Eglinton, T. I. & Edwards, K. J. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science 292, 1127–1131 (2001).
    Google Scholar 

    91.
    Hemingway, J. D. et al. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils. Science 360, 209–212 (2018).
    Google Scholar 

    92.
    Chang, S. & Berner, R. A. Coal weathering and the geochemical carbon cycle. Geochim. Cosmochim. Acta 63, 3301–3310 (1999).
    Google Scholar 

    93.
    Galy, V., Beyssac, O., France-Lanord, C. & Eglinton, T. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust. Science 322, 943–945 (2008).
    Google Scholar 

    94.
    Braakman, R., Follows, M. J. & Chisholm, S. W. Metabolic evolution and the self-organization of ecosystems. Proc. Natl Acad. Sci. USA 114, E3091–E3100 (2017).
    Google Scholar 

    95.
    Quigg, A. et al. The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425, 291–294 (2003).
    Google Scholar 

    96.
    Galbraith, E. D. & Martiny, A. C. A simple nutrient-dependence mechanism for predicting the stoichiometry of marine ecosystems. Proc. Natl Acad. Sci. USA 112, 8199–8204 (2015).
    Google Scholar 

    97.
    Coleman, M. L. & Chisholm, S. W. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc. Natl Acad. Sci. USA 107, 18634–18639 (2010).
    Google Scholar 

    98.
    Ward, L. M., Rasmussen, B. & Fischer, W. W. Primary productivity was limited by electron donors prior to the advent of oxygenic photosynthesis. J. Geophys. Res. Biogeosciences 124, 211–226 (2018).
    Google Scholar 

    99.
    Prangishvili, D. et al. The enigmatic archaeal virosphere. Nat. Rev. Microbiol. 15, 724–739 (2017).
    Google Scholar 

    100.
    Fischer, W. et al. Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. Precambrian Res. 169, 15–27 (2009).
    Google Scholar 

    101.
    Towe, K. M. Aerobic respiration in the Archaean? Nature 348, 54–56 (1990).
    Google Scholar 

    102.
    Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).
    Google Scholar 

    103.
    Ader, M. et al. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: a nitrogen isotope perspective. Earth Planet. Sci. Lett. 396, 1–13 (2014).
    Google Scholar 

    104.
    McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).
    Google Scholar 

    105.
    Mitchell, R. et al. Mineral weathering and soil development in the earliest land plant ecosystems. Geology 44, 1007–1010 (2016).
    Google Scholar 

    106.
    Gensel, P. G. The earliest land plants. Annu. Rev. Ecol. Evol. Syst. 39, 459–477 (2008).
    Google Scholar 

    107.
    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).
    Google Scholar 

    108.
    Johnson, J. E., Gerpheide, A., Lamb, M. P. & Fischer, W. W. O2 constraints from Paleoproterozoic detrital pyrite and uraninite. Geol. Soc. Am. Bull. 126, 813–830 (2014).
    Google Scholar 

    109.
    Falkowski, P. G. & Isozaki, Y. The Story of O2. Science 322, 540–542 (2008).
    Google Scholar 

    110.
    Canfield, D., Glazer, A. & Falkowski, P. The evolution and future of Earth’s nitrogen cycle. Science 333, 192–196 (2010).
    Google Scholar 

    111.
    Johnston, D. T., Wolfe-Simon, F., Pearson, A. & Knoll, A. H. Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proc. Natl Acad. Sci. USA 106, 16925–16929 (2009).
    Google Scholar 

    112.
    Galvez, M. Finding Earth. Geoscientist 29, 16–19 (2019).
    Google Scholar 

    113.
    Holland, H. D. The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. B 361, 903–915 (2006).
    Google Scholar 

    114.
    Raymond, J. & Segre, D. The effect of oxygen on biochemical networks and the evolution of complex life. Science 311, 1764–1767 (2006).
    Google Scholar 

    115.
    Avice, G. et al. Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochim. Cosmochim. Acta 232, 82–100 (2018).
    Google Scholar 

    116.
    Evans, K. A. The redox budget of subduction zones. Earth Sci. Rev. 113, 11–32 (2012).
    Google Scholar 

    117.
    Ulmer, P., Kägi, R. & Müntener, O. Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J. Petrol. 59, 11–58 (2018).
    Google Scholar 

    118.
    Tang, M., Erdman, M., Eldridge, G. & Lee, C.-T. A. The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci. Adv. 4, eaar4444 (2018).
    Google Scholar 

    119.
    Foley, S. F., Buhre, S. & Jacob, D. E. Evolution of the Archaean crust by delamination and shallow subduction. Nature 421, 249–252 (2003).
    Google Scholar 

    120.
    Jagoutz, O. & Behn, M. D. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134 (2013).
    Google Scholar 

    121.
    Krissansen-Totton, J., Bergsman, D. S. & Catling, D. C. On detecting biospheres from chemical thermodynamic disequilibrium in planetary atmospheres. Astrobiology 16, 39–67 (2016).
    Google Scholar 

    122.
    Lovelock, J. E. A physical basis for life detection experiments. Nature 207, 568–570 (1965).
    Google Scholar 

    123.
    Jelen, B. I., Giovannelli, D. & Falkowski, P. G. The role of microbial electron transfer in the coevolution of the biosphere and geosphere. Annu. Rev. Microbiol. 70, 45–62 (2016).
    Google Scholar 

    124.
    Shi, T., Bibby, T. S., Jiang, L., Irwin, A. J. & Falkowski, P. G. Protein interactions limit the rate of evolution of photosynthetic genes in cyanobacteria. Mol. Biol. Evol. 22, 2179–2189 (2005).
    Google Scholar 

    125.
    Eck, R. V. & Dayhoff, M. O. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152, 363–366 (1966).
    Google Scholar 

    126.
    Lin, W. et al. Origin of microbial biomineralization and magnetotaxis during the Archean. Proc. Natl Acad. Sci. USA 114, 2171–2176 (2017).
    Google Scholar 

    127.
    Raymond, J., Siefert, J. L., Staples, C. R. & Blankenship, R. E. The natural history of nitrogen fixation. Mol. Biol. Evol. 21, 541–554 (2004).
    Google Scholar 

    128.
    Fischer, W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).
    Google Scholar 

    129.
    Babcock, G. T. & Wikström, M. Oxygen activation and the conservation of energy in cell respiration. Nature 356, 301–309 (1992).
    Google Scholar 

    130.
    Dupont, C. L., Yang, S., Palenik, B. & Bourne, P. E. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc. Natl Acad. Sci. USA 103, 17822–17827 (2006).
    Google Scholar 

    131.
    Moore, E. K., Jelen, B. I., Giovannelli, D., Raanan, H. & Falkowski, P. G. Metal availability and the expanding network of microbial metabolisms in the Archaean eon. Nat. Geosci. 10, 629–636 (2017).
    Google Scholar 

    132.
    Falkowski, P. G., Barber, R. T. & Smetacek, V. Biogeochemical controls and feedbacks on ocean primary production. Science 281, 200–206 (1998).
    Google Scholar 

    133.
    Shi, T. & Falkowski, P. G. Genome evolution in cyanobacteria: the stable core and the variable shell. Proc. Natl Acad. Sci. USA 105, 2510–2515 (2008).
    Google Scholar 

    134.
    Knoll, A. H. Biomineralization and evolutionary history. Rev. Mineral. Geochem. 54, 329–356 (2003).
    Google Scholar 

    135.
    Rowland, S. M. & Shapiro, R. S. in Phanerozoic Reef Patterns (eds Kiessling, W. et al.) 95–128 (SEPM, 2002).

    136.
    Monteiro, F. M. et al. Why marine phytoplankton calcify. Sci. Adv. 2, e1501822 (2016).
    Google Scholar 

    137.
    Suchéras-Marx, B. & Henderiks, J. Downsizing the pelagic carbonate factory: impacts of calcareous nannoplankton evolution on carbonate burial over the past 17 million years. Global Planet. Change 123, 97–109 (2014).
    Google Scholar 

    138.
    Ridgwell, A. A mid Mesozoic revolution in the regulation of ocean chemistry. Mar. Geol. 217, 339–357 (2005).
    Google Scholar 

    139.
    Hönisch, B. et al. The geological record of ocean acidification. Science 335, 1058–1063 (2012).
    Google Scholar 

    140.
    Knoll, A. H., Bambach, R., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and Late Permian mass extinction. Science 273, 452–457 (1996).
    Google Scholar 

    141.
    Hong, H. et al. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium. Science 356, 527–531 (2017).
    Google Scholar 

    142.
    Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).
    Google Scholar 

    143.
    Peters, S. E. & Gaines, R. R. Formation of the Great Unconformity as a trigger for the Cambrian explosion. Nature 484, 363–366 (2012).
    Google Scholar 

    144.
    Hemingway, J. D., Rothman, D. H., Rosengard, S. Z. & Galy, V. V. An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation. Biogeosciences 14, 5099–5114 (2017).
    Google Scholar 

    145.
    Luque, F. J. et al. Deposition of highly crystalline graphite from moderate-temperature fluids. Geology 37, 275–278 (2009).
    Google Scholar 

    146.
    Rumble, D. III, Duke, E. F. & Hoering, T. L. Hydrothermal graphite in New Hampshire: evidence of carbon mobility during regional metamorphism. Geology 14, 452–455 (1986).
    Google Scholar 

    147.
    Crowe, S. A. et al. Photoferrotrophs thrive in an Archean ocean analogue. Proc. Natl Acad. Sci. USA 105, 15938–15943 (2008).
    Google Scholar 

    148.
    Pape, T., Blumenberg, M., Seifert, R., Bohrmann, G. & Michaelis, W. in Links Between Geological Processes, Microbial Activities & Evolution of Life 281–311 (Springer, 2008).

    149.
    Margolin, A. R., Gerringa, L. J., Hansell, D. A. & Rijkenberg, M. J. Net removal of dissolved organic carbon in the anoxic waters of the Black Sea. Mar. Chem. 183, 13–24 (2016).
    Google Scholar 

    150.
    Jessen, G. L. et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea). Sci. Adv. 3, e1601897 (2017).
    Google Scholar 

    151.
    Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).
    Google Scholar 

    152.
    Trembath-Reichert, E. et al. Gene sequencing-based analysis of microbial-mat morphotypes, Caicos Platform, British West Indies. J. Sediment. Res. 86, 629–636 (2016).
    Google Scholar 

    153.
    Ward, L. M., Kirschvink, J. L. & Fischer, W. W. Timescales of oxygenation following the evolution of oxygenic photosynthesis. Orig. Life Evol. Biosph. 46, 51–65 (2016).
    Google Scholar 

    154.
    Pierson, B. K. & Parenteau, M. N. Phototrophs in high iron microbial mats: microstructure of mats in iron-depositing hot springs. FEMS Microbiol. Ecol. 32, 181–196 (2000).
    Google Scholar 

    155.
    Kuntz, L., Laakso, T., Schrag, D. & Crowe, S. Modeling the carbon cycle in Lake Matano. Geobiology 13, 454–461 (2015).
    Google Scholar  More

  • in

    Author Correction: Climate-smart sustainable agriculture in low-to-intermediate shade agroforests

    Affiliations

    Sustainable Agroecosystems Group, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
    W. J. Blaser, J. Landolt & J. Six

    Council for Scientific and Industrial Research – Soil Research Institute, Kwadaso, Kumasi, Ghana
    J. Oppong & E. Yeboah

    Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
    S. P. Hart

    Authors
    W. J. Blaser

    J. Oppong

    S. P. Hart

    J. Landolt

    E. Yeboah

    J. Six

    Corresponding author
    Correspondence to W. J. Blaser. More