in

Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps

[adace-ad id="91168"]
  • 1.

    Costello, M. J. Biodiversity: The known, unknown, and rates of extinction. Curr. Biol. 25(9), 368–371 (2015).

    Google Scholar 

  • 2.

    Fontaine, B. et al. New species in the Old World: Europe as a frontier in biodiversity exploration, a test bed for 21st century taxonomy. PLoS ONE 7, 5 (2012).

    Google Scholar 

  • 3.

    Strauss, S. Y. & Irwin, R. E. Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu. Rev. Ecol. Evol. Syst. 35, 435–466 (2004).

    Google Scholar 

  • 4.

    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31(1), 67–80 (2016).

    PubMed  Google Scholar 

  • 5.

    Burrascano, S. et al. Congruence across taxa and spatial scales: Are we asking too much of species data?. Glob. Ecol. Biogeogr. 27, 980–990 (2018).

    Google Scholar 

  • 6.

    Lelli, C. et al. Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manag. 298, 27–38 (2019).

    Google Scholar 

  • 7.

    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 14(1), 19–28 (2011).

    ADS  PubMed  Google Scholar 

  • 8.

    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30(3), 279–338 (1960).

    MathSciNet  Google Scholar 

  • 9.

    Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21(2–3), 213–251 (1972).

    Google Scholar 

  • 10.

    Tuomisto, H. A diversity of beta diversities: sStraightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33(1), 2–22 (2010).

    Google Scholar 

  • 11.

    Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography 33(1), 23–45 (2010).

    Google Scholar 

  • 12.

    Ellison, A. M. Partitioning diversity 1. Ecology 91(7), 1962–1963 (2010).

    PubMed  Google Scholar 

  • 13.

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19(1), 134–143 (2010).

    Google Scholar 

  • 14.

    Carvalho, J. C., Cardoso, P. & Gomes, P. Determining the relative roles of species replacement and species richness differences in generating beta-diversity patterns. Glob. Ecol. Biogeogr. 21(7), 760–771 (2012).

    Google Scholar 

  • 15.

    Podani, J. & Schmera, D. A new conceptual and methodological framework for exploring and explaining pattern in presence–absence data. Oikos 120, 1625–1638 (2011).

    Google Scholar 

  • 16.

    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16(8), 951–963 (2013).

    PubMed  Google Scholar 

  • 17.

    Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3(5), 808–812 (2012).

    Google Scholar 

  • 18.

    Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27(1), 96–109 (2018).

    Google Scholar 

  • 19.

    Si, X., Baselga, A. & Ding, P. Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS ONE 10(5), e0127692 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 20.

    Da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernández, M. I. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers. Distrib. 24(9), 1277–1290 (2018).

    Google Scholar 

  • 21.

    Sanders, N. J. & Rahbek, C. The patterns and causes of elevational diversity gradients. Ecography 35(1), 1–3 (2012).

    Google Scholar 

  • 22.

    Willig, M. R. & Presley, S. J. The spatial configuration of taxonomic biodiversity along a tropical elevational gradient: α-, β-, and γ-partitions. Biotropica 51(2), 104–116 (2019).

    Google Scholar 

  • 23.

    Fontana, V. et al. Decomposing the land-use specific response of plant functional traits along environmental gradients. Sci. Total Environ. 599, 750–759 (2017).

    ADS  PubMed  Google Scholar 

  • 24.

    Viterbi, R. et al. Patterns of biodiversity in the northwestern Italian Alps: A multi-taxa approach. Commun. Ecol. 14(1), 18–30 (2013).

    Google Scholar 

  • 25.

    Leingärtner, A., Krauss, J. & Steffan-Dewenter, I. Species richness and trait composition of butterfly assemblages change along an altitudinal gradient. Oecologia 175(2), 613–623 (2014).

    ADS  PubMed  Google Scholar 

  • 26.

    Chatzaki, M., Lymberakis, P., Markakis, G. & Mylonas, M. The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradient of Crete, Greece: Species richness, activity and altitudinal range. J. Biogeogr. 32(5), 813–831 (2005).

    Google Scholar 

  • 27.

    Nascimbene, J. & Marini, L. Epiphytic lichen diversity along elevational gradients: Biological traits reveal a complex response to water and Energy. J. Biogeogr. 42, 1222–1232 (2015).

    Google Scholar 

  • 28.

    Spitale, D. The interaction between elevational gradient and substratum reveals how bryophytes respond to the climate. J. Veg. Sci. 27(4), 844–853 (2016).

    Google Scholar 

  • 29.

    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Bishop, T. R., Robertson, M. P., van Rensburg, B. J. & Parr, C. L. Contrasting species and functional beta diversity in montane ant assemblages. J. Biogeogr. 42(9), 1776–1786 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Paknia, O. & Sh, H. R. Geographical patterns of species richness and beta diversity of Larentiinae moths (Lepidoptera: Geometridae) in two temperate biodiversity hotspots. J. Insect Conserv. 19(4), 729–739 (2015).

    Google Scholar 

  • 32.

    Tello, J. S. et al. Elevational gradients in β-diversity reflect variation in the strength of local community assembly mechanisms across spatial scales. PLoS ONE 10(3), e0121458 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Steinwandter, M., Rief, A., Scheu, S., Traugott, M. & Seeber, J. Structural and functional characteristics of high alpine soil macro-invertebrate communities. Eur. J. Soil Biol. 86, 72–80 (2018).

    Google Scholar 

  • 34.

    Hilpold, A. et al. Decline of rare and specialist species across multiple taxonomic groups after grassland intensification and abandonment. Biodivers. Conserv. 27(14), 3729–3744 (2018).

    Google Scholar 

  • 35.

    Lasen, C. & Wilhalm, T. Natura-2000-Lebensräume in Südtirol (Abteilung Natur und Landschaft, Autonome Provinz Bozen-Südtirol, 2004).

    Google Scholar 

  • 36.

    Pollard, E. & Yates, T. J. Monitoring butterflies for ecology and conservation: The British butterfly monitoring scheme (Springer Science & Business Media, Berlin, 1994).

    Google Scholar 

  • 37.

    Elzinga, C. L., Salzer, D. W., Willoughby, J. W. & Gibbs, J. P. Monitoring plant and animal populations (Blackwell, Oxford, 2001).

    Google Scholar 

  • 38.

    Pascher, K. et al. Kartierhandbuch zur Biodiversitätserfassung im Agrarraum: Gefäßpflanzen, Tagfalter, Heuschrecken, sowie Zuordnung von Landschaftsstrukturen zu ausgewählten Biotoptypen. Forschungsbericht im Auftrag der Bundesministerien für Gesundheit, Sektion II und Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (2009).

  • 39.

    Schindler, S. et al. Österreichisches Biodiversitätsmonitoring (ÖBM) – Kulturlandschaft: Konzept für die Erfassung von Status und Trends der Biodiversität (2017)

  • 40.

    Kempson, D., Lloyd, M. & Ghelardi, R. A new extractor for woodland litter. Pedobiologia 3, 1–21 (1963).

    Google Scholar 

  • 41.

    Laub, C. A., Youngman, R. R., Love, K. & Mize, T. Using pitfall traps to monitor insect activity (Virginia Tech, Blacksburg, 2009).

    Google Scholar 

  • 42.

    Churchill, T. B. & Arthur, J. M. Measuring spider richness: Effects of different sampling methods and spatial and temporal scales. J. Insect Conserv. 3(4), 287–295 (1999).

    Google Scholar 

  • 43.

    Schlick-Steiner, et al. Assessing ant assemblages: Pitfall trapping versus nest counting (Hymenoptera, Formicidae). Insect. Soc. 53, 274–281 (2006).

    Google Scholar 

  • 44.

    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).

    Google Scholar 

  • 45.

    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 7(12), 1451–1456 (2016).

    Google Scholar 

  • 46.

    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 93(12), 2533–2547 (2012).

    PubMed  Google Scholar 

  • 47.

    Hixon, G., Thompson, C. & Bichteler, A. drsmooth: Dose-Response Modeling with Smoothing Splines. R package version 1.9.0 (2015).

  • 48.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv preprint, arXiv:1406.5823 (2014).

  • 49.

    Lawrence Lodge, R. H. E. et al. Spatial autocorrelation in plant communities: Vegetation texture versus species composition. Ecography 30(6), 801–811 (2007).

    Google Scholar 

  • 50.

    Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).

    PubMed  Google Scholar 

  • 51.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  • 52.

    R Core Team R: A language and environment for statistical computing.https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, 2019).

  • 53.

    RStudio Team RStudio: Integrated Development for R. https://www.rstudio.com/ (RStudio, Inc., Boston, 2019).

  • 54.

    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453(7192), 216–2019 (2008).

    ADS  PubMed  Google Scholar 

  • 55.

    Nunes, C. A., Braga, R. F., Figueira, J. E. C., de Siqueira Neves, F. & Fernandes, G. W. Dung beetles along a tropical altitudinal gradient: Environmental filtering on taxonomic and functional diversity. PLoS ONE 11(6), e0157442 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Ah-Peng, C. et al. Bryophyte diversity and range size distribution along two altitudinal gradients: Continent vs. island. Acta Oecol. 42, 58–65 (2012).

    ADS  Google Scholar 

  • 57.

    Hernández-Hernández, R. et al. Scaling α-and β-diversity: Bryophytes along an elevational gradient on a subtropical oceanic Island (La Palma, Canary Islands). J. Veg. Sci. 28(6), 1209–1219 (2017).

    Google Scholar 

  • 58.

    Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 8(2), 224–239 (2005).

    Google Scholar 

  • 59.

    Perillo, L. N., de Siqueira Neves, F., Antonini, Y. & Martins, R. P. Compositional changes in bee and wasp communities along Neotropical mountain altitudinal gradient. PLoS ONE 12(7), e0182054 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Descombes, P., Vittoz, P., Guisan, A. & Pellissier, L. Uneven rate of plant turnover along elevation in grasslands. Alpine Bot. 127(1), 53–63 (2017).

    Google Scholar 

  • 61.

    Schellenberger Costa, D. et al. Plant niche breadths along environmental gradients and their relationship to plant functional traits. Divers. Distrib. 24(12), 1869–1882 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Novel gas-capture approach advances nuclear fuel management

    Confirmation of ovarian follicles in an enantiornithine (Aves) from the Jehol biota using soft tissue analyses