Sources of solutes and carbon cycling in perennially ice-covered Lake Untersee, Antarctica
1.
Matsumoto, G. I. et al. Geochemical characteristics of Antarctic lakes and ponds. Proc. NIPR Symp. Polar Biol. 5, 125–145 (1992).
Google Scholar
2.
Doran, P. T. et al. Paleolimnology of extreme cold terrestrial and extraterrestrial environments. In Long-Term Environmental Change in Arctic and Antarctic Lakes 475–507 (Springer, 2004); https://doi.org/10.1007/978-1-4020-2126-8_15.
3.
Wharton, R. A., Lyons, W. B. & Des Marais, D. J. Stable isotopic biogeochemistry of carbon and nitrogen in a perennially ice-covered Antarctic lake. Chem. Geol. 107, 159–172 (1993).
ADS CAS PubMed Google Scholar
4.
Gibson, J. A. E. et al. Biogeographic Trends in Antarctic Lake Communities. In Trends in Antarctic Terrestrial and Limnetic Ecosystems 71–99 (Springer, 2006). https://doi.org/10.1007/1-4020-5277-4_5.
5.
Hawes, I., Sumner, D. Y., Andersen, D. T. & Mackey, T. J. Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice-covered Antarctic lake. Geobiology 9, 394–410 (2011).
CAS PubMed Google Scholar
6.
Jungblut, A. D., Lovejoy, C. & Vincent, W. F. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 4, 191–202 (2010).
CAS PubMed Google Scholar
7.
Lawson, J., Doran, P. T., Kenig, F., Des Marais, D. J. & Priscu, J. C. Stable carbon and nitrogen isotopic composition of benthic and pelagic organic matter in lakes of the McMurdo Dry Valleys, Antarctica. Aquat. Geochem. 10, 269–301 (2004).
CAS Google Scholar
8.
Neumann, K., Lyons, W. B., Priscu, J. C., Desmarais, D. J. & Welch, K. A. The carbon isotopic composition of dissolved inorganic carbon in perennially ice-covered Antarctic lakes: searching for a biogenic signature. Ann. Glaciol. 39, 518–524 (2004).
ADS CAS Google Scholar
9.
Hawes, I., Jungblut, A. D., Obryk, M. K. & Doran, P. T. Growth dynamics of a laminated microbial mat in response to variable irradiance in an Antarctic lake. Freshw. Biol. 61, 396–410 (2016).
Google Scholar
10.
Hermichen, W.-D., Kowski, P. & Wand, U. Lake Untersee, a first isotope study of the largest freshwater lake in the interior of East Antarctica. Nature 315, 131–133 (1985).
ADS CAS Google Scholar
11.
Wand, U., Schwarz, G., Brüggemann, E. & Bräuer, K. Evidence for physical and chemical stratification in Lake Untersee (central Dronning Maud Land, East Antarctica). Antarct. Sci. 9, 43–45 (1997).
ADS Google Scholar
12.
Andersen, D. T., Sumner, D. Y., Hawes, I., Webster-Brown, J. & McKay, C. P. Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology 9, 280–293 (2011).
CAS PubMed Google Scholar
13.
Faucher, B., Lacelle, D., Fisher, D. A., Andersen, D. T. & McKay, C. P. Energy and water mass balance of Lake Untersee and its perennial ice cover, East Antarctica. Antarct. Sci. 31, 271–285 (2019).
ADS Google Scholar
14.
Weisleitner, K., Perras, A., Moissl-Eichinger, C., Andersen, D. T. & Sattler, B. Source environments of the microbiome in perennially ice-covered Lake Untersee, Antarctica. Front. Microbiol. 10, 1019 (2019).
PubMed PubMed Central Google Scholar
15.
Hawes I., Sumner D., & Jungblut A. D. Complex structure but simple function in microbial mats from Antarctic Lakes. In The Structure and Function of Aquatic Microbial Communities. Advances in Environmental Microbiology, Vol. 7 (ed Hurst, C.) (Springer, Cham, 2019) https://doi.org/10.1007/978-3-030-16775-2_4.
Google Scholar
16.
Koo, H. et al. Microbial communities and their predicted metabolic functions in growth laminae of a unique large conical mat from Lake Untersee, East Antarctica. Front. Microbiol. 8, 1347 (2017).
PubMed PubMed Central Google Scholar
17.
Faucher, B., Lacelle, D., Fisher, D. A., Weisleitner, K. & Andersen, D. T. Modeling δD-δ18O steady-state of well-sealed perennially ice covered-lakes and their recharge source: examples from Lake Untersee and Lake Vostok, Antarctica. Front. Earth Sci. https://doi.org/10.3389/feart.2020.00220 (2020).
Article Google Scholar
18.
McKay, C. P., Andersen, D. & Davila, A. Antarctic environments as models of planetary habitats: University Valley as a model for modern Mars and Lake Untersee as a model for Enceladus and ancient Mars. Polar J. 7, 303–318 (2017).
Google Scholar
19.
Bormann, P. The Schirmacher Oasis, Queen Maud Land, East Antarctica and its surroundings. Polarforschung 64, 151–153 (1995).
Google Scholar
20.
Paech, H.-J. & Stackebrandt, W. Geology. In The Schirmacher Oasis, Queen Maud Land, East Antarctica and its surroundings (eds Bormann, P., & Fritzsche, D.) 59–159 (Petermanns Geographische Mitteilungen, 1995).
21.
Andersen, D. T., McKay, C. P. & Lagun, V. Climate conditions at perennially ice-covered Lake Untersee, East Antarctica. J. Appl. Meteorol. Climatol. 54, 1393–1412 (2015).
ADS Google Scholar
22.
Hoffman, M. J., Fountain, A. G. & Liston, G. E. Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica. J. Geophys. Res. 113, F04014 (2008).
ADS Google Scholar
23.
Steel, H. C. B., McKay, C. P. & Andersen, D. T. Modeling circulation and seasonal fluctuations in perennially ice-covered and ice-walled Lake Untersee, Antarctica. Limnol. Oceanogr. 60, 1139–1155 (2015).
ADS Google Scholar
24.
Bevington, J. et al. The thermal structure of the anoxic trough in Lake Untersee, Antarctica. Antarct. Sci. 30, 333–344 (2018).
ADS Google Scholar
25.
Wand, U., Samarkin, V. A., Nitzsche, H.-M. & Hubberten, H.-W. Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica. Limnol. Oceanogr. 51, 1180–1194 (2006).
ADS CAS Google Scholar
26.
McKay, C. P., Clow, G. D., Wharton, R. A. & Squyres, S. W. Thickness of ice on perennially frozen lakes. Nature 313, 561–562 (1985).
ADS CAS PubMed Google Scholar
27.
Kaup, E., Loopman, A., Klokov, V., Simonov, I. & Haendel, D. Limnological investigations in the Untersee Oasis. In Limnological Studies in Queen Maud Land (East Antarctica) (ed. Martin, J.) 28–42 (Valgus, Tallinn, 1988).
Google Scholar
28.
Isaksson, E. et al. A century of accumulation and temperature changes in Dronning Maud Land, Antarctica. J. Geophys. Res. Atmos. 101, 7085–7094 (1996).
ADS Google Scholar
29.
Killawee, J. A., Fairchild, I. J., Tison, J. L., Janssens, L. & Lorrain, R. Segregation of solutes and gases in experimental freezing of dilute solutions: implications for natural glacial systems. Geochim. Cosmochim. Acta 62, 3637–3655 (1998).
ADS CAS Google Scholar
30.
Santibáñez, P. A. et al. Differential incorporation of bacteria, organic matter, and inorganic ions into lake ice during ice formation. J. Geophys. Res. Biogeosciences 124, 585–600 (2019).
ADS Google Scholar
31.
Jonsell, U., Hansson, M. E., Mörth, C. M. & Torssander, P. Sulfur isotopic signals in two shallow ice cores from Dronning Maud Land, Antarctica. Tellus Ser. B Chem. Phys. Meteorol. 57, 341–350 (2005).
ADS Google Scholar
32.
Patris, N., Delmas, R. J. & Jouzel, J. Isotopic signatures of sulfur in shallow Antarctic ice cores. J. Geophys. Res. Atmos. 105, 7071–7078 (2000).
ADS CAS Google Scholar
33.
Castellano, E. et al. Holocene volcanic history as recorded in the sulfate stratigraphy of the European Project for Ice Coring in Antarctica Dome C (EDC96) ice core. J. Geophys. Res. Atmos. 110, D06114. https://doi.org/10.1029/2004JD005259 (2005).
ADS CAS Article Google Scholar
34.
Wolff, E. W. et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, 491–496 (2006).
ADS CAS PubMed Google Scholar
35.
Mayewski, P. A. et al. Climate change during the last deglaciation in Antarctica. Science 272, 1636–1638 (1996).
ADS CAS PubMed Google Scholar
36.
Alexander, B. et al. East Antarctic ice core sulfur isotope measurements over a complete glacial–interglacial cycle. J. Geophys. Res. Atmos. 108, 4786 (2003).
ADS Google Scholar
37.
Nielsen, H., Pilot, J., Grinenko, L. N., Grinenko, V. A. & Lein, A. Y. Lithospheric sources of sulphur. In Stable Isotopes: Natural and Anthropogenic Sulphur in the Environment (ed. Krouse, H.) 65–132 (Wiley, New York, 1991).
Google Scholar
38.
Parkhurst, D. L. & Appelo, C. A. J. Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, chapter A43 (2013). https://doi.org/10.1016/0029-6554(94)90020-5.
39.
Blum, J. D. & Erel, Y. A silicate weathering mechanism linking increases in marine 87Sr/86Sr with global glaciation. Nature 373, 415–418 (1995).
ADS CAS Google Scholar
40.
Blum, J. D. & Erel, Y. Rb–Sr isotope systematics of a granitic soil chronosequence: the importance of biotite weathering. Geochim. Cosmochim. Acta 61, 3193–3204 (1997).
ADS CAS Google Scholar
41.
Takacs, C. D., Priscu, J. C. & McKnight, D. M. Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. Limnol. Oceanogr. 46, 1189–1194 (2001).
ADS CAS Google Scholar
42.
Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).
ADS CAS Google Scholar
43.
Lyons, W. B. et al. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica. Appl. Geochem. 32, 26–36 (2013).
CAS Google Scholar
44.
Hayes, J. M. Factors controlling 13C contents of sedimentary organic compounds: principles and evidence. Mar. Geol. 113, 111–125 (1993).
ADS CAS Google Scholar
45.
Hage, M. M., Uhle, M. E. & Macko, S. Biomarker and stable isotope characterization of coastal pond-derived organic matter, McMurdo Dry Valleys, Antarctica. Astrobiology 7, 645–661 (2007).
ADS CAS PubMed Google Scholar
46.
Calder, J. A. & Parker, P. L. Geochemical implications of induced changes in C13 fractionation by blue-green algae. Geochim. Cosmochim. Acta 37, 133–140 (1973).
ADS CAS Google Scholar
47.
Pardue, J. W., Scalan, R. S., Van Baalen, C. & Parker, P. L. Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochim. Cosmochim. Acta 40, 309–312 (1976).
ADS CAS Google Scholar
48.
Wada, E. et al. Ecological aspects of carbon and nitrogen isotope ratios of cyanobacteria. Plankt. Benthos Res. 7, 135–145 (2012).
Google Scholar
49.
Gow, A. J. & Williamson, T. Gas inclusions in the Antarctic ice sheet and their significance. US Army Corps Eng Cold Reg Res Eng Lab Res Rep (1975).
50.
Samyn, D., Fitzsimons, S. J. & Lorrain, R. D. Strain-induced phase changes within cold basal ice from Taylor Glacier, Antarctica, indicated by textural and gas analyses. J. Glaciol. 51, 611–619 (2005).
ADS Google Scholar
51.
Monnin, E. et al. Evidence for substantial accumulation rate variability in Antarctica during the Holocene, through synchronization of CO2 in the Taylor Dome, Dome C and DML ice cores. Earth Planet. Sci. Lett. 224, 45–54 (2004).
ADS CAS Google Scholar
52.
Schmitt, J. et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336, 711–714 (2012).
ADS CAS PubMed Google Scholar
53.
Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R. & Fischer, H. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle. Paleoceanography 31, 434–452 (2016).
ADS Google Scholar
54.
Clark, I. Groundwater Geochemistry and Isotopes (CRC Press, Cambridge, 2015). https://doi.org/10.1201/b18347.
Google Scholar
55.
Wadham, J. L. et al. Biogeochemical weathering under ice: size matters. Glob. Biogeochem. Cycles 24, GB3025 (2010).
ADS Google Scholar
56.
Wynn, P. M., Hodson, A. & Heaton, T. Chemical and isotopic switching within the subglacial environment of a high Arctic Glacier. Biogeochemistry 78, 173–193 (2006).
CAS Google Scholar
57.
Graly, J. A., Drever, J. I. & Humphrey, N. F. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems. Glob. Biogeochem. Cycles 31, 709–727 (2017).
ADS CAS Google Scholar
58.
Badger, M. The roles of carbonic anhydrases in photosynthetic CO2 concentrating mechanisms. Photosynth. Res. https://doi.org/10.1023/A:1025821717773 (2003).
Article PubMed Google Scholar
59.
Eigenbrode, J. L. & Freeman, K. H. Late Archean rise of aerobic microbial ecosystems. Proc. Natl. Acad. Sci. 103, 15759–15764 (2006).
ADS CAS PubMed Google Scholar
60.
Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101 (2008).
ADS CAS PubMed Google Scholar
61.
Allwood, A. C., Walter, M. R., Kamber, B. S., Marshall, C. P. & Burch, I. W. Stromatolite reef from the early Archaean era of Australia. Nature 441, 714–718 (2006).
ADS CAS PubMed Google Scholar
62.
Tomkins, J. D., Antoniades, D., Lamoureux, S. F. & Vincent, W. F. A simple and effective method for preserving the sediment–water interface of sediment cores during transport. J. Paleolimnol. 40, 577–582 (2008).
ADS Google Scholar
63.
St-Jean, G. Automated quantitative and isotopic (13C) analysis of dissolved inorganic carbon and dissolved organic carbon in continuous-flow using a total organic carbon analyser. Rapid Commun. Mass Spectrom. 17, 419–428 (2003).
ADS CAS PubMed Google Scholar
64.
Murseli, S., et al. The preparation of water (DIC, DOC) and gas (CO2, CH4) samples for radiocarbon analysis at AEL-AMS, Ottawa, Canada. Radiocarbon 61, 1563–1571 https://doi.org/10.1017/RDC.2019.14 (2019).
65.
Crann, C. A. et al. First status report on radiocarbon sample preparation techniques at the A.E. Lalonde AMS Laboratory (Ottawa, Canada). Radiocarbon 59, 695–704 (2017).
CAS Google Scholar
66.
Stuiver, M. & Polach, H. A. Reporting of 14C data. Radiocarbon 19, 355–363 (1977).
Google Scholar
67.
Lyons, W. B., Welch, K. A., Priscu, J. C., Tranter, M. & Royston-Bishop, G. Source of Lake Vostok cations constrained with strontium isotopes. Front. Earth Sci. 4, 78 (2016).
ADS Google Scholar
68.
Lyons, W. B. et al. Strontium isotopic signatures of the streams and lakes of Taylor Valley, Southern Victoria Land, Antarctica: chemical weathering in a polar climate. Aquat. Geochem. 8, 75–95 (2002).
CAS Google Scholar
69.
Friedman, I., Rafter, A. & Smith, G. I. A thermal, isotopic, and chemical study of Lake Vanda and Don Juan Pond, Antartica. In Contributions to Antarctic Research IV, volume 67 (eds. Elliot, D. H. & Blaisdell, G. L.) 47–74 (1995). https://doi.org/10.1002/9781118668207.ch5.
70.
Grousset, F. E. et al. Antarctic (Dome C) ice-core dust at 18 k.y. B.P.: isotopic constraints on origins. Earth Planet. Sci. Lett. 111, 175–182 (1992).
ADS CAS Google Scholar
71.
Burton, G., Morgan, V., Boutron, C. & Rosman, K. J. High-sensitivity measurements of strontium isotopes in polar ice. Anal. Chim. Acta 469, 225–233 (2002).
CAS Google Scholar More
