in

Variations in foliar carbon:nitrogen and nitrogen:phosphorus ratios under global change: a meta-analysis of experimental field studies

[adace-ad id="91168"]
  • 1.

    He, J. S. et al. Stoichiometry and large-scale patterns of leaf C and nitrogen in the grassland biomes of China. Oecologia 149, 115–122 (2006).

    ADS  Google Scholar 

  • 2.

    Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamante, M. M. C. Controls over foliar N:P ratios in tropical rain forests. Ecology 88, 107–118 (2007).

    PubMed  Google Scholar 

  • 3.

    Hättenschwiler, S. et al. High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol. 179, 165–175 (2008).

    PubMed  Google Scholar 

  • 4.

    Zhou, G. et al. Climate and litter C/N ratio constrain soil organic carbon accumulation. Nat. Sci. Rev. 6, 746–757 (2019).

    CAS  Google Scholar 

  • 5.

    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    PubMed  Google Scholar 

  • 6.

    Xu, S. et al. Different spatial patterns of nitrogen and phosphorus resorption efficiencies in China’s forests. Sci. Rep. 7, 10584 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Elser, J. J. et al. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 186, 593–608 (2010).

    CAS  PubMed  Google Scholar 

  • 8.

    Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 111, 1–39 (2011).

    Google Scholar 

  • 9.

    Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. commun. 4, 2934 (2013).

    ADS  PubMed  Google Scholar 

  • 10.

    Yuan, Z. Y. & Chen, H. Y. H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Change 5, 465–469 (2015).

    ADS  CAS  Google Scholar 

  • 11.

    Lindroth, R. L. et al. Consequences of elevated C dioxide and ozone for foliar chemical composition and dynamics in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera). Environ. Pollut. 115, 395–404 (2001).

    CAS  PubMed  Google Scholar 

  • 12.

    Liu, L., King, J. S. & Giardina, C. P. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiol. 25, 1511–1522 (2005).

    CAS  PubMed  Google Scholar 

  • 13.

    Luo, W. et al. C and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecol. Evol. 7, 6927–6934 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 111, 1–39 (2012).

    Google Scholar 

  • 15.

    Sardans, J. et al. Changes in nutrient concentrations of leaves and roots in response to global change factors. Glob. Change Biol. 23, 3849–3856 (2017).

    ADS  Google Scholar 

  • 16.

    Yue, K. et al. Influence of multiple global change drivers on terrestrial carbon storage: additive effects are common. Ecol. Lett. 20, 663–672 (2017).

    PubMed  Google Scholar 

  • 17.

    Paul, M. J. & Pellny, T. K. Carbon metabolite feedback regulation of leaf photosynthesis and development. J. Exp. Bot. 54, 539–547 (2003).

    CAS  PubMed  Google Scholar 

  • 18.

    Flexas, J. et al. Keeping a positive C balance under adverse conditions: Responses of photosynthesis and respiration to water stress. Physiol. Plantarum 127, 343–352 (2006).

    CAS  Google Scholar 

  • 19.

    Chen, S., Lin, G., Huang, J. & Jenerette, G. D. Dependence of C sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob. Change Biol. 15, 2450–2461 (2009).

    ADS  Google Scholar 

  • 20.

    Booth, M. S., Stark, J. M. & Rastetter, E. Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data. Ecol. Monogr. 75, 139–157 (2005).

    Google Scholar 

  • 21.

    Zheng, M. H., Zhou, Z. H., Luo, Y. Q., Zhao, P. & Mo, J. M. Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A meta-analysis. Glob. Change Biol. 00, 1–13 (2019).

    Google Scholar 

  • 22.

    Barnard, R. & Leadley, P. W. Global change, nitrification, and denitrification: A review. Glob. Biogeochem. Cycle. https://doi.org/10.1029/2004GB002282 (2005).

    Article  Google Scholar 

  • 23.

    Lu, M. et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytol. 189, 1040–1050 (2011).

    CAS  PubMed  Google Scholar 

  • 24.

    King, K. W. et al. Phosphorus transport in agricultural subsurface drainage: A review. J. Environ. Qual. 44, 467–485 (2014).

    Google Scholar 

  • 25.

    Hou, E. et al. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob. Change Biol. 24, 3344–3356 (2018).

    ADS  Google Scholar 

  • 26.

    Yuan, Z. Y. et al. Experimental and observational studies find contrasting responses of soil nutrients to climate change. eLife 6, e23255. https://doi.org/10.7554/eLife.23255 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Dunne, J. A., Saleska, S. R., Fischer, M. L. & Harte, J. Integrating experimental and gradient methods in ecological climate change research. Ecology 85, 904–916 (2004).

    Google Scholar 

  • 28.

    Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009).

    ADS  Google Scholar 

  • 29.

    Invers, O., Kraemer, G. P., Pérez, M. & Romero, J. Effects of nitrogen addition on nitrogen metabolism and carbon reserves in the temperate seagrass Posidonia oceanica. J. Exp. Mar. Biol. Ecol. 303, 97–114 (2004).

    CAS  Google Scholar 

  • 30.

    Throop, H. L. & Lerdau, M. T. Effects of nitrogen deposition on insect herbivory: Implications for community and ecosystem processes. Ecosystems 7, 109–133 (2004).

    CAS  Google Scholar 

  • 31.

    Homyak, P. E. et al. Effect of drought manipulation on soil nitrogen cycling: A meta-analysis. J. Geophys. Res.-Biogeosci. 122, 3260–3272 (2017).

    CAS  Google Scholar 

  • 32.

    Tharayil, N. et al. Changes in the structural composition and reactivity of Acer rubrum leaf litter tannins exposed to warming and altered precipitation: Climatic stress-induced tannins are more reactive. New Phytol. 191, 132–145 (2011).

    CAS  PubMed  Google Scholar 

  • 33.

    Tattini, M. et al. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanusxacerifolia plants during Mediterranean summers. New Phytol. 207, 613–626 (2015).

    CAS  PubMed  Google Scholar 

  • 34.

    Bertiller, M. B., Sain, C. L., Carrera, A. L. & Vargas, D. N. Patterns of nitrogen and phosphorus conservation in dominant perennial grasses and shrubs across an aridity gradient in Patagonia Argentina. J. Arid Environ. 62, 209–223 (2005).

    ADS  Google Scholar 

  • 35.

    Lambers, H., Chapin, F. S. & Pons, T. L. Plant Physiological Ecology (Springer, New York, 2008).

    Google Scholar 

  • 36.

    Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 37.

    Yuan, Z. Y. & Chen, H. Y. H. Negative effects of fertilization on plant nutrient resorption. Ecology 96, 373–380 (2015).

    CAS  PubMed  Google Scholar 

  • 38.

    Keeler, B. L., Hobbie, S. E. & Kellogg, L. E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: Implications for litter and soil organic matter decomposition. Ecosystems 12, 1–15 (2008).

    Google Scholar 

  • 39.

    Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).

    CAS  PubMed  Google Scholar 

  • 40.

    Staddon, P. L., Gregersen, R. & Jakobsen, I. The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Glob. Change Biol. 10, 1909–1921 (2004).

    ADS  Google Scholar 

  • 41.

    He, M. & Dijsktra, F. A. Drought effect on plant nitrogen and phophorus: A meta-analysis. New Phytol. 204, 924–931 (2014).

    CAS  PubMed  Google Scholar 

  • 42.

    Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).

    Google Scholar 

  • 43.

    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, New York, 2009).

    Google Scholar 

  • 44.

    Baquero, O.S. ggsn: North symbols and scale bars for maps created with ‘ggplot2’ or ‘ggmap’. https://CRAN.R-project.org/package=ggsn (2017).

  • 45.

    Gallic, E. legendMap: North arrow and scale bar for ggplot2 graphics. R package version 1.0 (2016).

  • 46.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 

  • 47.

    Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).

    Google Scholar 

  • 48.

    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Google Scholar 

  • 49.

    Adams, D. C. Phylogenetic meta-analysis. Evolution 62, 567–572 (2008).

    PubMed  Google Scholar 

  • 50.

    Yan, K. et al. Caution is needed in quantifying terrestrial biomass responses to elevated temperature: Meta-analyses of field-based experimental warming across China. Forests 9, 619 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Publisher Correction: Impacts of hydrothermal plume processes on oceanic metal cycles and transport

    Covid-19 shutdown led to increased solar power output