Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017
1.
Estrada-Peña, A., De, J. & de la Fuente, J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res.108, 104–128 (2014).
Article Google Scholar
2.
Vu Hai, V. et al. Monitoring human tick-borne disease risk and tick bite exposure in Europe: Available tools and promising future methods. Ticks Tick. Borne. Dis.5, 607–619 (2014).
Article Google Scholar
3.
Jaenson, T. G. T., Jaenson, D. G. E., Eisen, L., Petersson, E. & Lindgren, E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit. Vectors5, 8 (2012).
Article Google Scholar
4.
Skarphédinsson, S., Jensen, P. M. & Kristiansen, K. Survey of tickborne infections in Denmark. Emerg. Infect. Dis.11, 1055–1061 (2005).
Article Google Scholar
5.
Michelet, L. et al. High-throughput screening of tick-borne pathogens in Europe. Front. Cell. Infect. Microbiol.4, 103 (2014).
Article Google Scholar
6.
Heyman, P. et al. A clear and present danger: tick-borne diseases in Europe. Expert Rev. Anti. Infect. Ther.8, 33–50 (2010).
Article Google Scholar
7.
Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors6, 1–11 (2013).
Article Google Scholar
8.
Jore, S. et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasit. Vectors4, 1–11 (2011).
Article Google Scholar
9.
Kjelland, V. et al. Tick-borne encephalitis virus, Borrelia burgdorferi sensu lato, Borrelia miyamotoi, Anaplasma phagocytophilum and Candidatus Neoehrlichia mikurensis in Ixodes ricinus ticks collected from recreational islands in southern Norway. Ticks Tick. Borne. Dis.9, 1098–1102 (2018).
Article Google Scholar
10.
Rizzoli, A. et al. Ixodes ricinus and Its Transmitted Pathogens in Urban and Peri-Urban Areas in Europe: New Hazards and Relevance for Public Health. Front. Public Heal.2, 251 (2014).
Google Scholar
11.
Klitgaard, K., Kjær, L. J., Isbrand, A., Hansen, M. F. & Bødker, R. Multiple infections in questing nymphs and adult female Ixodes ricinus ticks collected in a recreational forest in Denmark. Ticks Tick. Borne. Dis.10, 1060–1065 (2019).
Article Google Scholar
12.
Pedersen, B. N. et al. Distribution of Neoehrlichia mikurensis in Ixodes ricinus ticks along the coast of Norway: The western seaboard is a low‐prevalence region. Zoonoses Public Health zph. 12662, https://doi.org/10.1111/zph.12662 (2019).
13.
Jenkins, A. et al. Detection of Candidatus Neoehrlichia mikurensis in Norway up to the northern limit of Ixodes ricinus distribution using a novel real time PCR test targeting the groEL gene. BMC Microbiol.19, 199 (2019).
Article Google Scholar
14.
Lindgren, E. & Gustafson, R. Tick-borne encephalitis in Sweden and climate change. Lancet (London, England)358, 16–18 (2001).
CAS Article Google Scholar
15.
Del Fabbro, S., Gollino, S., Zuliani, M. & Nazzi, F. Investigating the relationship between environmental factors and tick abundance in a small, highly heterogeneous region. J. Vector Ecol.40, 107–116 (2015).
Article Google Scholar
16.
Nazzi, F. et al. Ticks and Lyme borreliosis in an alpine area in northeast Italy. Med. Vet. Entomol.24, 220–6 (2010).
CAS PubMed Google Scholar
17.
Jaenson, T. G. T. et al. Risk indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med. Vet. Entomol.23, 226–237 (2009).
CAS Article Google Scholar
18.
Hudson, P. J. et al. Tick-borne encephalitis virus in northern Italy: molecular analysis, relationships with density and seasonal dynamics of Ixodes ricinus. Med. Vet. Entomol.15, 304–313 (2001).
MathSciNet CAS Article Google Scholar
19.
Hubalek, Z., Halouzka, J. & Juricova, Z. Longitudinal surveillance of the tick Ixodes ricinusfor borreliae. Med. Vet. Entomol.17, 46–51 (2003).
CAS Article Google Scholar
20.
Mysterud, A. et al. Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasit. Vectors11, 309 (2018).
Article Google Scholar
21.
Jensen, P. M. & Hansen, H. Spatial Risk Assessment for Lyme Borreliosis in Denmark. Scand. J. Infect. Dis.32, 545–550 (2000).
CAS Article Google Scholar
22.
Moutailler, S. et al. Co-infection of Ticks: The Rule Rather Than the Exception. PLoS Negl. Trop. Dis.10, e0004539 (2016).
Article Google Scholar
23.
Reye, A. L. et al. Prevalence of Tick-Borne Pathogens in Ixodes ricinus and Dermacentor reticulatus Ticks from Different Geographical Locations in Belarus. PLoS One8, e54476 (2013).
ADS CAS Article Google Scholar
24.
Estrada-Peña, A. Distribution, Abundance, and Habitat Preferences of Ixodes ricinus (Acari: Ixodidae) in Northern Spain. J. Med. Entomol.38, 361–370 (2001).
Article Google Scholar
25.
Estrada-Pena, A. & De La Fuente, J. Species interactions in occurrence data for a community of tick-transmitted pathogens. Sci. Data3, 2–4 (2016).
Article Google Scholar
26.
Estrada-Peña, A. et al. An updated meta-analysis of the distribution and prevalence of Borrelia burgdorferi s.l. in ticks in Europe. Int. J. Health Geogr.17, 41 (2018).
Article Google Scholar
27.
Soleng, A. & Kjelland, V. Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in Ixodes ricinus ticks in Brønnøysund in northern Norway. Ticks Tick. Borne. Dis.4, 218–221 (2013).
Article Google Scholar
28.
Øines, Ø., Radzijevskaja, J., Paulauskas, A. & Rosef, O. Prevalence and diversity of Babesia spp. in questing Ixodes ricinus ticks from Norway. Parasit. Vectors5, 156 (2012).
Article Google Scholar
29.
Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L. & Rego, R. O. M. Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Appl. Environ. Microbiol. 83 (2017).
30.
Hornok, S. et al. Occurrence of ticks and prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. in three types of urban biotopes: Forests, parks and cemeteries. Ticks Tick. Borne. Dis.5, 785–789 (2014).
Article Google Scholar
31.
Moutailler, S. et al. Co-infection of Ticks: The Rule Rather Than the Exception. PLoS Negl Trop Dis.10(3), e0004539 (2016).
Article Google Scholar
32.
Reye, A. L. et al. Pathogen prevalence in questing and feeding ticks. figshare https://plos.figshare.com/articles/_Pathogen_prevalence_in_questing_and_feeding_ticks_/174458 (2013).
33.
Estrada-Peña, A. & De La Fuente, J. Data from: Species interactions in occurrence data for a community of tick-transmitted pathogens. Dryad https://doi.org/10.5061/dryad.2h3f2 (2016).
34.
Estrada-Peña, A. et al. Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in the western palearctic. Appl. Environ. Microbiol.77, 3838–45 (2011).
Article Google Scholar
35.
Estrada-Peña, A. Data from: The dataset of ticks in South America. Dryad https://doi.org/10.5061/dryad.860473k (2019).
36.
Kjær, L. J. et al. Predicting and mapping human risk of exposure to Ixodes ricinus nymphs using climatic and environmental data, Denmark, Norway and Sweden, 2016. Eurosurveillance24, 1800101 (2019).
Article Google Scholar
37.
Kjær, L. J. et al. Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data. Sci. Rep.9, 18144 (2019).
ADS Article Google Scholar
38.
Corine Land Cover 2006 raster data. European Environment Agency, https://www.eea.europa.eu/data-and-maps/data/clc-2006-raster (2010).
39.
Scharlemann, J. P. W. et al. Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS Data. PLoS One3, e1408 (2008).
ADS Article Google Scholar
40.
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, http://www.r-project.org (2018).
41.
Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version2, 6–7 (2017).
Google Scholar
42.
Gray, J. S. & Lohan, G. The development of a sampling method for the tick Ixodes ricinus and its use in a redwater fever area. Ann. Appl. Biol.101, 421–427 (1982).
Article Google Scholar
43.
Klitgaard, K., Chriél, M., Isbrand, A., Jensen, T. K. & Bødker, R. Identification of Dermacentor reticulatus Ticks Carrying Rickettsia raoultii on Migrating Jackal, Denmark. Emerg. Infect. Dis.23, 2072–2074 (2017).
Article Google Scholar
44.
Jaenson, T. G. T. et al. First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden. Parasit. Vectors9, 377 (2016).
Article Google Scholar
45.
Klitgaard, K. et al. Screening for multiple tick-borne pathogens in Ixodes ricinus ticks from birds in Denmark during spring and autumn migration seasons. Ticks Tick. Borne. Dis.10, 546–552 (2019).
Article Google Scholar
46.
Cowling, D. W., Gardner, I. A. & Johnson, W. O. Comparison of methods for estimation of individual-level prevalence based on pooled samples. Prev. Vet. Med.39, 211–25 (1999).
CAS Article Google Scholar
47.
Kjær, L. J. et al. A large-scale screening for the taiga tick, Ixodes persulcatus, and the meadow tick, Dermacentor reticulatus, in southern Scandinavia, 2016. Parasit. Vectors12, 338 (2019).
Article Google Scholar
48.
Kjær, L. J. et al. Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. figshare https://doi.org/10.6084/m9.figshare.c.4938270 (2020). More
