in

Differential impact of thermal and physical permafrost disturbances on High Arctic dissolved and particulate fluvial fluxes

[adace-ad id="91168"]
  • 1.

    Woo, M. K. Permafrost Hydrology (Springer, New York, 2012).

    Google Scholar 

  • 2.

    Braun, C., Hardy, D. R., Bradley, R. S. & Retelle, M. J. Streamflow and suspended sediment transfer to Lake Sophia, Cornwallis Island, Nunavut, Canada. Arct. Antarct. Alp. Res. 32(4), 456–465. https://doi.org/10.1080/15230430.2000.12003390 (2000).

    Article  Google Scholar 

  • 3.

    Woo, M. K. & McCann, B. S. Climatic variability, climatic change, runoff, and suspended sediment regimes in northern Canada. Phys. Geogr. 15(3), 201–226. https://doi.org/10.1080/02723646.1994.10642513 (1994).

    Article  Google Scholar 

  • 4.

    Frey, K. E. & McClelland, J. W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 23, 169–182. https://doi.org/10.1002/hyp.7196 (2009).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Lafrenière, M. J. et al. Chapter 6: Drivers, trends and uncertainties of changing freshwater systems. In From Science to Policy in the Eastern Canadian Arctic: An Integrated Regional Impact Study (IRIS) of Climate Change and Modernization (eds Bell, T. & Brown, T. M.) (ArcticNet, Halifax, 2018).

    Google Scholar 

  • 6.

    Post, E. et al. The polar regions in a 2°C warmer world. Sci. Adv. 5(12), eaaw9883. https://doi.org/10.1126/sciadv.aaq9883 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-drive thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45(4), 371–374. https://doi.org/10.1130/G38626.1 (2017).

    ADS  Article  Google Scholar 

  • 8.

    Kokelj, S. V. et al. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales. J. Geophys. Res. Earth Surf. 118, 681–692. https://doi.org/10.1002/jgrf.20063 (2013).

    ADS  Article  Google Scholar 

  • 9.

    Rudy, A. C. A., Lamoureux, S. F., Kokelj, S. V., Smith, I. R. & England, J. H. Accelerating thermokarst transforms ice-cored terrain triggering a downstream cascade to the ocean. Geophys. Res. Lett. 44(21), 11080–11087. https://doi.org/10.1002/2017GL074912 (2017).

    ADS  Article  Google Scholar 

  • 10.

    Malone, L., Lacelle, D., Kokelj, S. & Clark, I. D. Impacts of hillslope thaw slumps on the geochemistry of permafrost catchments (Stony Creek watershed, NWT, Canada). Chem. Geol. 356, 38–49. https://doi.org/10.1016/j.chemgeo.2013.07.010 (2013).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Kokelj, S. V. & Jorgenson, M. T. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119. https://doi.org/10.1002/ppp.1779 (2013).

    Article  Google Scholar 

  • 12.

    Lantz, T. C. & Kokelj, S. V. Increasing rates of retrogressive thaw slump activity in the Mackenzie Delta region, N.W.T., Canada. Geophys. Res. Lett. 35, L06502. https://doi.org/10.1029/2007/GL032433 (2008).

    ADS  Article  Google Scholar 

  • 13.

    Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329. https://doi.org/10.1038/s41467-019-09314-7(2019) (2019).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 14.

    Bowden, W. B. et al. Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystems. J. Geophys. Res. 113, G02026. https://doi.org/10.1029/2007JG000470 (2008).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Lafrenière, M. J. & Lamoureux, S. F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth Sci. Rev. 191, 212–223. https://doi.org/10.1016/j.earscirev.2019.02.018 (2019).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Kokelj, S. V. & Burn, C. R. Geochemistry of the active layer and near-surface permafrost, Mackenzie Delta region, Northwest Territories, Canada. Can. J. Earth Sci. 42(1), 37–48. https://doi.org/10.1139/E04-089 (2005).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Keller, K., Blum, J. D. & Kling, G. W. Stream geochemistry as an indicator of increasing permafrost thaw depth in an arctic watershed. Chem. Geol. 273, 76–81. https://doi.org/10.1016/j.chemgeo.2010.02.013 (2010).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Vonk, J. E. et al. A centennial record of fluvial organic matter input from the discontinuous permafrost catchment of Lake Torneträsk. J. Geophys. Res. 117, G03018. https://doi.org/10.1029/2011JG001887 (2012).

    Article  Google Scholar 

  • 19.

    Tank, S. E., Fellman, J. B., Hood, E. & Kritzberg, E. S. Beyond respiration: controls on lateral carbon fluxes across the terrestrial-aquatic interface. Limnol. Oceanogr. Lett. 3, 76–88. https://doi.org/10.1002/lol2.10065 (2018).

    Article  Google Scholar 

  • 20.

    Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R. & Bowden, W. B. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12, 3725–3740. https://doi.org/10.5194/bg-12-3725-2015 (2015).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023. https://doi.org/10.1029/2008GB003327 (2009).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593. https://doi.org/10.5194/bg-11-6573-2014 (2014).

    ADS  Article  Google Scholar 

  • 23.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179. https://doi.org/10.1038/nature14338 (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 24.

    Semiletov, I. P. et al. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial organic carbon vs. carbon transport by coastal erosion. Biogeosciences 8, 2407–2426. https://doi.org/10.5194/bg-8-2407-2011 (2011).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Schädel, C. et al. Divergent patterns of experimental and model-derived permafrost ecosystem carbon dynamics in response to Arctic warming. Environ. Res. Lett. 13, 105002. https://doi.org/10.1088/1748-9326/aae0ff (2018).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Dean, J. F. et al. East Siberian Arctic inland waters emit mostly contemporary carbon. Nat. Commun. 11, 1627. https://doi.org/10.1038/s41467-020-15511-6 (2020).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    O’Donnell, J. A. et al. DOM composition and transformation in boreal forest soils: The effects of temperature and organic-horizon decomposition state. J. Geophys. Res. 121(10), 2727–2744. https://doi.org/10.1002/2016JG003431 (2016).

    CAS  Article  Google Scholar 

  • 28.

    Tank, S. E. et al. Landscape-level controls on dissolved carbon flux from diverse catchments of the circumboreal. Glob. Biogeochem. Cycles 26, GB0E02. https://doi.org/10.1029/2012GB004299 (2012).

    CAS  Article  Google Scholar 

  • 29.

    Thienpont, J. R. et al. Biological responses to permafrost thaw slumping in Canadian Arctic lakes. Freshw. Biol. 58, 337–353. https://doi.org/10.1111/fwb.12061 (2012).

    Article  Google Scholar 

  • 30.

    Vonk, J. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40(11), 2689–2693. https://doi.org/10.1002/grl.50348 (2013).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Littlefair, C. A., Tank, S. E. & Kokelj, S. V. Retrogressive thaw slumps temper dissolved organic carbon delivery to streams of the Peel Plateau, NWT, Canada. Biogeosciences 14, 5487–5505. https://doi.org/10.5194/bg-14-5487-2017 (2017).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Fouché, J., Lafrenière, M. J., Rutherford, K. & Lamoureux, S. F. Seasonal hydrology and permafrost disturbance impacts on dissolved organic matter composition in High Arctic headwater catchments. Arct. Sci. 3, 378–405. https://doi.org/10.1139/as-2016-0031 (2017).

    Article  Google Scholar 

  • 33.

    Lamoureux, S. F. & Lafrenière, M. J. Seasonal fluxes and age of particulate organic carbon exported from Arctic catchments impacted by localized permafrost slope disturbances. Environ. Res. Lett. 9, 045002. https://doi.org/10.1088/1748-9326/9/4/045002 (2014).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Guo, L., Ping, C.-L. & Macdonald, R. W. Mobilization pathways of organic carbon from permafrost to arctic rivers in a changing climate. Geophys. Res. Lett. 34, L13603. https://doi.org/10.1029/2007GL030689 (2007).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Schreiner, K. M., Bianchi, T. S. & Rosenheim, B. E. Evidence for permafrost thaw and transport from an Alaskan North Slope watershed. Geophys. Res. Lett. 41, 3117–3126. https://doi.org/10.1002/2014GL059514 (2014).

    ADS  Article  Google Scholar 

  • 36.

    Wang, J.-J. et al. Differences in riverine and pond water dissolved organic matter composition and sources in Canadian High Arctic watersheds affected by active layer detachments. Environ. Sci. Technol. 52, 1062–1071. https://doi.org/10.1021/acs.est.7b05506 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 37.

    Guo, L. & Macdonald, R. W. Source and transport of terrigenous organic matter in the upper Yukon River: evidence from isotope (δ13C, Δ14C, and δ15N) composition of dissolved, colloidal, and particulate phases. Glob. Biogeochem. Cycles 20, GB2011. https://doi.org/10.1029/2005GB002593 (2006).

    ADS  CAS  Article  Google Scholar 

  • 38.

    Bintanja, R. & Andry, O. Towards a rain-dominated Arctic. Nat. Clim. Change 7, 263–267. https://doi.org/10.1038/nclimate3240 (2017).

    ADS  Article  Google Scholar 

  • 39.

    Bintanja, A. The impact of Arctic warming on increased rainfall. Sci. Rep. 8, 16001. https://doi.org/10.1038/s41598-018-34450-3 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Lewis, T., Lafrenière, M. J. & Lamoureux, S. F. Hydrochemical and sedimentary responses of paired High Arctic watersheds to unusual climate and permafrost change, Cape Bounty, Melville Island, Canada. Hydrol. Process. 26, 2003–2018. https://doi.org/10.1002/hyp.8335 (2012).

    ADS  Article  Google Scholar 

  • 41.

    Beel, C. R., Lamoureux, S. F. & Orwin, J. F. Fluvial response to a period of hydrometeorological change and landscape disturbance in the Canadian High Arctic. Geophys. Res. Lett. 45(19), 10446–10455. https://doi.org/10.1029/2018GL079660 (2018).

    ADS  Article  Google Scholar 

  • 42.

    Roberts, K. E. et al. Climate and permafrost effects on the chemistry and ecosystems of High Arctic lakes. Sci. Rep. 7, 13292. https://doi.org/10.1038/s41598-017-13658-9 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Lamoureux, S. F., Lafrenière, M. J. & Favaro, E. A. Erosion dynamics following localized permafrost slope disturbances. Geophys. Res. Lett. 41(15), 5499–5505. https://doi.org/10.1002/2014GL060677 (2014).

    ADS  Article  Google Scholar 

  • 44.

    Lamhonwah, D., Lafrenière, M. J., Lamoureux, S. F. & Wolfe, B. B. Multi-year impacts of permafrost disturbance and thermal perturbation on High Arctic stream chemistry. Arct. Sci. 3, 254–276. https://doi.org/10.1139/as-2016-0024 (2017).

    Article  Google Scholar 

  • 45.

    Lamoureux, S. F. & Lafrenière, M. J. More than just snowmelt: integrated watershed science for changing climate and permafrost at the Cape Bounty Arctic Watershed Observatory. WIREs Water 5(1), e1255. https://doi.org/10.1002/wat2.1255 (2017).

    Article  Google Scholar 

  • 46.

    Hodgson, D. A., Vincent, J.-S. & Fyles, J. G. Quaternary Geology of Central Melville Island, Northwest Territories. Geological Survey of Canada, Paper 83-16. https://doi.org/10.4095/119784 (1984).

  • 47.

    Soil Classification Working Group. The Canadian System of Soil Classification 3rd edn, Vol. 1646 (Agriculture and Agri-Food Canada Publication, Revised, 1998). https://sis.agr.gc.ca/cansis/publications/manuals/1998-cssc-ed3/index.html

  • 48.

    Grewer, D. M., Lafrenière, M. J., Lamoureux, S. F. & Simpson, M. J. Redistribution of soil organic matter by permafrost disturbance in the Canadian High Arctic. Biogeochemistry 128(3), 397–415. https://doi.org/10.1007/s10533-016-0215-7 (2016).

    CAS  Article  Google Scholar 

  • 49.

    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282. https://doi.org/10.1111/j.1654-1103.2005.tb02365.x (2005).

    Article  Google Scholar 

  • 50.

    Favaro, E. A. & Lamoureux, S. F. Antecedent controls on rainfall runoff response and sediment transport in a High Arctic catchment. Geogr. Ann. Phys. Geogr. 96(4), 433–446. https://doi.org/10.1111/geoa.12063 (2014).

    Article  Google Scholar 

  • 51.

    Taylor, J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science Books, Mill Valley, 1982).

    Google Scholar 

  • 52.

    Watt, W. E., Lathem, K. W., Neill, C. R., Richards, T. L. & Rousselle, J. Hydrology of Floods in Canada: A Guide to Planning and Design (National Research Council of Canada, Ottawa, 1989).

    Google Scholar 

  • 53.

    Government of Canada – Environment and Natural Resources. Historical Climate Data. www.climat.meteo.gc.ca (2017).

  • 54.

    Singh, V. Elementary Hydrology (Prentice Hall, Upper Saddle River, 1992).

    Google Scholar 

  • 55.

    Emmerton, C. A., Lesack, L. F. W. & Vincent, W. F. Mackenzie River nutrient delivery to the Arctic Ocean and effects of the Mackenzie Delta during open water conditions. Glob. Biogeochem. Cycles 22, GB1024. https://doi.org/10.1029/2006GB002856 (2008).

    ADS  CAS  Article  Google Scholar 

  • 56.

    Gareis, J. A. L. & Lesack, L. F. W. Fluxes of particulates and nutrients during hydrologically defined seasonal periods in an ice-affect great Arctic river, the Mackenzie. Water Resour. Res. 53, 6109–6132. https://doi.org/10.1002/2017WR020623 (2017).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Kennedy, P., Kennedy, H. & Papadimitriou, S. The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Commun. Mass Spectrom. 19, 1063–1068. https://doi.org/10.1002/rcm.1889 (2005).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 58.

    Komada, T., Anderson, M. R. & Dorfmeier, C. L. Carbonate removal from coastal sediments for the determination of organic carbon and its isotopic signatures, δ13C and Δ14C: comparison of fumigation and direct acidification by hydrochloric acid. Limnol. Oceanogr. Methods 6, 254–262. https://doi.org/10.4319/lom.2008.6.254 (2008).

    CAS  Article  Google Scholar 

  • 59.

    Searcy, J. K. & Hardison, C. H. Double-mass curves. In Manual of Hydrology: Part 1. General Surface-Water Techniques. Water-Supply Paper 1541-B (US Geological Survey, 1960).

  • 60.

    Spencer, R. G. M. et al. Detecting the signature of permafrost thaw in Arctic rivers. Geophys. Res. Lett. 42, 2830–2835. https://doi.org/10.1002/2015GL063498 (2015).

    ADS  Article  Google Scholar 

  • 61.

    Benner, R., Benitez-Nelson, B., Kaiser, K. & Amon, R. M. W. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean. Geophys. Res. Lett. 31, L05305. https://doi.org/10.1029/2003GL019251 (2004).

    ADS  CAS  Article  Google Scholar 

  • 62.

    Raymond, P. et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: a carbon isotopic study of the five largest Arctic rivers. Glob. Biogeochem. Cycles 21, GB4011. https://doi.org/10.1029/2007GB002934 (2007).

    ADS  CAS  Article  Google Scholar 

  • 63.

    Striegl, R. G., Dornblaser, M. M., Aiken, G. R., Wickland, K. P. & Raymond, P. A. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska 2001–2005. Water Resour. Res. 43, W02411. https://doi.org/10.1029/2006WR005201 (2007).

    ADS  CAS  Article  Google Scholar 

  • 64.

    Drake, T. W. et al. The ephemeral signature of permafrost carbon in an Arctic fluvial network. JGR Biogeosci. 123(5), 1475–1485. https://doi.org/10.1029/2017JG004311 (2018).

    CAS  Article  Google Scholar 

  • 65.

    Pautler, B. G., Simpson, A. J., McNally, D. J., Lamoureux, S. F. & Simpson, M. J. Arctic permafrost active layer detachments stimulate microbial activity and degradation of soil organic matter. Environ. Sci. Technol. 44, 4076–4082. https://doi.org/10.1021/es903685j (2010).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 66.

    Grewer, D. M., Lafrenière, M. J., Lamoureux, S. F. & Simspon, M. J. Potential shifts in Canadian High Arctic sedimentary organic matter composition with permafrost active layer detachments. Org. Geochem. 79, 1–13. https://doi.org/10.1016/j.orggeochem.2014.11.007 (2015).

    CAS  Article  Google Scholar 

  • 67.

    Kalbitz, K., Schwesig, D., Rethemeyer, J. & Matzner, E. Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol. Biochem. 37(7), 1319–1331. https://doi.org/10.1016/j.soilbio.2004.11.028 (2005).

    CAS  Article  Google Scholar 

  • 68.

    Owens, P. N., Petticrew, E. L. & van der Perk, M. Sediment response to catchment disturbances. J. Soils Sediments 10, 591–596. https://doi.org/10.1007/s11368-010-0235-1 (2010).

    Article  Google Scholar 

  • 69.

    Grosse, G. et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116, G00K06. https://doi.org/10.1029/2010JG001507 (2011).

    CAS  Article  Google Scholar 

  • 70.

    Vonk, J. E. et al. Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12, 7129–7167. https://doi.org/10.5194/bg-12-7129-2015 (2015).

    ADS  CAS  Article  Google Scholar 

  • 71.

    Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374. https://doi.org/10.1007/s10584-013-0730-7 (2013).

    ADS  CAS  Article  Google Scholar 

  • 72.

    Vonk, J. E., van Dongen, B. E. & Gustafsson, Ö. Selective preservation of old organic carbon fluvially released from sub-Arctic soils. Geophys. Res. Lett. 37, L11605. https://doi.org/10.1029/2010GL042909 (2010).

    ADS  CAS  Article  Google Scholar 

  • 73.

    Gordeev, V. V. & Kravchishina, M. D. River flux of dissolved organic carbon (DOC) and particulate organic carbon (POC) to the Arctic Ocean: what are the consequences of the global changes. In Influence of Climate Change on the Changing Arctic and sub-Arctic Conditions (eds Nihoul, J. C. J. & Kostianoy, A. G.) 145–161 (Springer, Berlin, 2009).

    Google Scholar 

  • 74.

    Rudy, A. C. A., Lamoureux, S. F., Treitz, P. & Collingwood, A. Identifying permafrost slope disturbance using multi-temporal optical satellite images and change detection techniques. Cold Reg. Sci. Technol. 88, 37–49. https://doi.org/10.1016/j.coldregions.2012.12.008 (2013).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Building a more sustainable MIT — from home

    Unraveling ecosystem functioning in intertidal soft sediments: the role of density-driven interactions