Mayetiola destructor (Diptera: Cecidmyiidae) host preference and survival on small grains with respect to leaf reflectance and phytohormone concentrations
1.
Wiseman, B. R. Plant-resistance to insects in integrated pest-management. Plant Dis. 78, 927–932. https://doi.org/10.1094/pd-78-0927 (1994).
Article Google Scholar
2.
Painter, R. H. Insect resistance in crop plants. Soil Sci. 72 (1951).
3.
Orr, D. B. & Boethel, D. J. Influence of plant antibiosis through four trophic levels. Oecologia 70, 242–249. https://doi.org/10.1007/BF00379247 (1986).
ADS CAS Article PubMed Google Scholar
4.
Smith, C. M. & Clement, S. L. Molecular Bases of Plant Resistance to Arthropods. Annu. Rev. Entomol. 57, 309–328. https://doi.org/10.1146/annurev-ento-120710-100642 (2011).
CAS Article PubMed Google Scholar
5.
Radcliffe, R. H. in Radcliffe’s IPM world textbook Vol. https://ipmworld.umn.edu/ratcliffe-hessian-fly (eds Radcliffe E.B. & Hutchison W.D.) (University of Minnesota, 1997).
6.
Kosma, D. K., Nemacheck, J. A., Jenks, M. A. & Williams, C. E. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J 63, 31–43 (2010).
CAS PubMed Google Scholar
7.
Smiley, R. W., Gourlie, J. A., Whittaker, R. G., Easley, S. A. & Kidwell, K. K. Economic impact of Hessian fly (Diptera: Cecidomyiidae) on spring wheat in Oregon and additive yield losses with Fusarium crown rot and lesion nematode. J Econ Entomol 97, 397–408 (2004).
Article Google Scholar
8.
Harris, M. O., Sandanayaka, M. & Griffin, A. Oviposition preferences of the Hessian fly and their consequences for the survival and reproductive potential of offspring. Ecol. Entomol. 26, 473–486. https://doi.org/10.1046/j.1365-2311.2001.00344.x (2001).
Article Google Scholar
9.
Ganehiarachchi, G. A. S. M., Anderson, K. M., Harmon, J. & Harris, M. O. Why oviposit there? Fitness consequences of a gall midge choosing the plant’s youngest leaf. Environ Entomol 42, 123–130 (2013).
CAS Article Google Scholar
10.
Kanno, H. & Harris, M. O. Physical features of grass leaves influence the placement of eggs within the plant by the Hessian fly. Entomol. Exp. Appl. 96, 69–80. https://doi.org/10.1046/j.1570-7458.2000.00680.x (2000).
Article Google Scholar
11.
Harris, M. O. & Rose, S. Chemical, color, and tactile cues influencing oviposition behavior of the Hessian fly (Diptera, Cecidomyiidae). Environ. Entomol. 19, 303–308. https://doi.org/10.1093/ee/19.2.303 (1990).
Article Google Scholar
12.
Kanno, H. & Harris, M. O. Leaf physical and chemical features influence selection of plant genotypes by hessian fly. J. Chem. Ecol. 26, 2335–2354 (2000).
CAS Article Google Scholar
13.
Cervantes, D. E., Eigenbrode, S. D., Ding, H. J. & Bosque-Perez, N. A. Oviposition responses by Hessian fly, Mayetiola destructor, to wheats varying in surface waxes. J. Chem. Ecol. 28, 193–210 (2002).
CAS Article Google Scholar
14.
Morris, B. D., Foster, S. P. & Harris, M. O. Identification of 1-octacosanal and 6-methoxy-2-benzoxazolinone from wheat as ovipositional stimulants for Hessian fly, Mayetiola destructor. J. Chem. Ecol. 26, 859–873 (2000).
CAS Article Google Scholar
15.
Harris, M. O., Rose, S. & Malsch, P. The role of vision in the host plant-finding behavior of the Hessian fly. Physiol. Entomol. 18, 31–42. https://doi.org/10.1111/j.1365-3032.1993.tb00446.x (1993).
Article Google Scholar
16.
Rohfritsch, O. A fungus associated gall midge, Lasioptera arundinis (Schiner), on Phragmites australis (Cav) Trin. Bull. Soc. Bot. France Lett. Bot. 139, 45–59. https://doi.org/10.1080/01811797.1992.10824942 (1992).
Article Google Scholar
17.
Schmid, R. B., Knutson, A., Giles, K. L. & McCornack, B. P. Hessian fly (Diptera: Cecidomyiidae) biology and management in wheat. J. Integr. Pest Manag. 9, 12. https://doi.org/10.1093/jipm/pmy008 (2018).
Article Google Scholar
18.
Gagné, R. J. & Hatchett, J. H. Instars of the Hessian Fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am. 82, 73–79. https://doi.org/10.1093/aesa/82.1.73 (1989).
Article Google Scholar
19.
Lidell, M. C. & Schuster, M. F. Distribution of the Hessian fly and its control in Texas. Southwestern Entomologist 15, 133–145 (1990).
Google Scholar
20.
Morgan, G., Sansone, C. & Knutson, A. Hessian fly in Texas wheat. E-350 (Texas A&M, 2005).
21.
Flanders, K. L., Reisig, D. D., Buntin, G. D., Herbert, J. D. A. & Johnson, D. W. Biology and management of Hessian fly in the Southeast. ANR1069 (Alabama Cooperative Extension System, 2013).
22.
Wellso, S. G. Aestivation and Phenology of the Hessian Fly (Diptera: Cecidomyiidae) in Indiana. Environ. Entomol. 20, 795–801. https://doi.org/10.1093/ee/20.3.795 (1991).
Article Google Scholar
23.
Boyd, M. L. & Bailey, W. C. Hessian fly management on wheat. G7180 (Missouri Extension, University of Missouri-Columbia, 2000).
24.
Ando, K. et al. Genome-wide associations for multiple pest resistances in a Northwestern United States elite spring wheat panel. PLoS One 13, e0191305/0191301-e0191305/0191325. https://doi.org/10.1371/journal.pone.0191305 (2018).
25.
Anderson, K. M. & Harris, M. O. Susceptibility of North Dakota Hessian Fly (Diptera: Cecidomyiidae) to 31 H Genes Mediating Wheat Resistance. J. Econ. Entomol. 112, 2398–2406 (2019).
Article Google Scholar
26.
Sardesai, N., Nemacheck, J. A., Subramanyam, S. & Williams, C. E. Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor. Appl. Genet. 111, 1167–1173 (2005).
CAS Article Google Scholar
27.
Zhu, L., Liu, X. & Chen, M.-S. Differential accumulation of phytohormones in wheat seedlings attacked by avirulent and virulent Hessian fly (Diptera: Cecidomyiidae) larvae. J. Econ. Entomol. 103, 178–185 (2010).
CAS Article Google Scholar
28.
Mithöfer, A. & Boland, W. Recognition of Herbivory-Associated Molecular Patterns. Plant Physiol. 146, 825. https://doi.org/10.1104/pp.107.113118 (2008).
CAS Article PubMed PubMed Central Google Scholar
29.
Stuart, J. J., Chen, M.-S., Shukle, R. & Harris, M. O. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopathol. 50, 339–357 (2012).
CAS Article Google Scholar
30.
Liu, X. et al. Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33, 2171–2194 (2007).
CAS Article Google Scholar
31.
Subramanyam, S. et al. Expression of two wheat defense-response genes, Hfr-1 and Wci-1, under biotic and abiotic stresses. Plant Sci. 170, 90–103. https://doi.org/10.1016/j.plantsci.2005.08.006 (2006).
CAS Article Google Scholar
32.
Wu, J. et al. Differential responses of wheat inhibitor-like genes to Hessian fly, Mayetiola destructor, attacks during compatible and incompatible interactions. J. Chem. Ecol. 34, 1005–1012 (2008).
CAS Article Google Scholar
33.
Giovanini, M. P. et al. A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. Mol. Plant Pathol. 8, 69–82 (2007).
CAS Article Google Scholar
34.
Liu, X. et al. Reactive oxygen species are involved in plant defense against a gall midge. Plant Physiol. 152, 985. https://doi.org/10.1104/pp.109.150656 (2010).
CAS Article PubMed PubMed Central Google Scholar
35.
Bari, R. & Jones, J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488. https://doi.org/10.1007/s11103-008-9435-0 (2009).
CAS Article PubMed Google Scholar
36.
Denancé, N., Sánchez-Vallet, A., Goffner, D. & Molina, A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science 4. https://doi.org/10.3389/fpls.2013.00155 (2013)
37.
Dinh, S. T., Baldwin, I. T. & Galis, I. The HERBIVORE ELICITOR-REGULATED1 gene enhances abscisic acid levels and defenses against herbivores in Nicotiana attenuate plants. Plant Physiol. 162, 2106–2124 (2013).
CAS Article Google Scholar
38.
War, A. R., Paulraj, M. G., War, M. Y. & Ignacimuthu, S. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant signaling & behavior 6, 1787–1792. https://doi.org/10.4161/psb.6.11.17685 (2011).
39.
Nguyen, D., Rieu, I., Mariani, C. & van Dam, N. M. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol. Biol. 91, 727–740. https://doi.org/10.1007/s11103-016-0481-8 (2016).
CAS Article PubMed PubMed Central Google Scholar
40.
Lee, A. et al. Inverse correlation between jasmonic acid and salicylic acid during early wound response in rice. Biochem. Biophys. Res. Commun. 318, 734–738. https://doi.org/10.1016/j.bbrc.2004.04.095 (2004).
CAS Article PubMed Google Scholar
41.
Kunkel, B. N. & Brooks, D. M. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5, 325–331. https://doi.org/10.1016/S1369-5266(02)00275-3 (2002).
CAS Article PubMed Google Scholar
42.
Farmer, E. E., Alméras, E. & Krishnamurthy, V. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6, 372–378. https://doi.org/10.1016/S1369-5266(03)00045-1 (2003).
CAS Article PubMed Google Scholar
43.
Loake, G. & Grant, M. Salicylic acid in plant defence—the players and protagonists. Curr. Opin. Plant Biol. 10, 466–472. https://doi.org/10.1016/j.pbi.2007.08.008 (2007).
CAS Article PubMed Google Scholar
44.
Felton, G. W., Bi, J. L., Summers, C. B., Mueller, A. J. & Duffey, S. S. Potential role of lipoxygenases in defense against insect herbivory. J. Chem. Ecol. 20, 651–666. https://doi.org/10.1007/BF02059605 (1994).
CAS Article PubMed Google Scholar
45.
Audenaert, K., De Meyer, G. B. & Höfte, M. M. Abscisic Acid Determines Basal Susceptibility of Tomato to Botrytis cinerea and Suppresses Salicylic Acid-Dependent Signaling Mechanisms. Plant Physiol. 128, 491. https://doi.org/10.1104/pp.010605 (2002).
CAS Article PubMed PubMed Central Google Scholar
46.
Mohr, P. G. & Cahill, D. M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Functional & Integrative Genomics 7, 181–191, https://doi.org/10.1007/s10142-006-0041-4 (2007).
47.
Harris, M. O., Dando, J. L., Griffin, W. & Madie, C. Susceptibility of cereal and non-cereal grasses to attack by Hessian fly (Mayetiola destructor (Say)). N. Zeal. J. Crop Hortic. Scie.ce 24, 229–238. https://doi.org/10.1080/01140671.1996.9513957 (1996).
Article Google Scholar
48.
Gitelson, A. A. & Merzlyak, M. N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 148, 494–500. https://doi.org/10.1016/S0176-1617(96)80284-7 (1996).
CAS Article Google Scholar
49.
Foster, S. P. & Harris, M. O. Foliar chemicals of wheat and related grasses influencing oviposition by Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae). J Chem Ecol 18, 1965–1980 (1992).
CAS Article Google Scholar
50.
Gagne, R. J., Hatchett, J. H., Lhaloui, S. & El Bouhssini, M. Hessian fly and barley stem gall midge, two different species of mayetiola (Diptera: Cecidomyiidae) in Morocco. Ann. Entomol. Soc. Am. 84, 436–443. https://doi.org/10.1093/aesa/84.4.436 (1991).
Article Google Scholar
51.
Cherif, A., Kinoshita, N., Taylor, D. & Mediouni Ben Jemâa, J. Molecular characterization and phylogenetic comparisons of three Mayetiola species (Diptera: Cecidomyiidae) infesting cereals in Tunisia. Applied Entomology and Zoology 52, 543–551, https://doi.org/10.1007/s13355-017-0507-y (2017).
52.
Gould, F. Simulation models for predicting durability of insect-resistant germ plasm: hessian fly (Diptera: Cecidomyiidae)-resistant Winter Wheat. Environ. Entomol. 15, 11–23. https://doi.org/10.1093/ee/15.1.11 (1986).
Article Google Scholar
53.
Chen, M.-S., Liu, X., Wang, H. & El-Bouhssini, M. Hessian fly (Diptera: Cecidomyiidae) interactions with barley, rice, and wheat seedlings. J Econ Entomol 102, 1663–1672 (2009).
Article Google Scholar
54.
Ratcliffe, R. H., Safranski, G. G., Patterson, F. L., Ohm, H. W. & Taylor, P. L. Biotype status of Hessian fly (Diptera, Cecidomyiidae) populations from the eastern United-States and their response to 14 Hessian fly resistance genes. J. Econ. Entomol. 87, 1113–1121. https://doi.org/10.1093/jee/87.4.1113 (1994).
Article Google Scholar
55.
Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985. https://doi.org/10.1111/j.1365-2664.2012.02173.x (2012).
Article Google Scholar
56.
Erb, M., Meldau, S. & Howe, G. A. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17, 1–20 (2012).
Article Google Scholar
57.
Williams, C. E., Collier, C. C., Nemacheck, J. A., Liang, C. Z. & Cambron, S. E. A lectin-like wheat gene responds systemically to attempted feeding by avirulent first-instar Hessian fly larvae. J. Chem. Ecol. 28, 1411–1428. https://doi.org/10.1023/a:1016200619766 (2002).
CAS Article PubMed Google Scholar
58.
Herrera-Vasquez, A., Salinas, P. & Holuigue, L. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression (vol 6, 171, 2015). Frontiers in Plant Science 8, https://doi.org/10.3389/fpls.2017.00964 (2017).
59.
Hatchett, J. H., Kreitner, G. L. & Elzinga, R. J. Larval Mouthparts and Feeding Mechanism of the Hessian Fly (Diptera: Cecidomyiidae). Ann. Entomol. Soc. Am. 83, 1137–1147. https://doi.org/10.1093/aesa/83.6.1137 (1990).
Article Google Scholar
60.
Schotzko, D. J. & Bosque-Perez, N. A. Relationship between Hessian fly infestation density and early seedling growth of resistant and susceptible wheat. J. Agric. Urban Entomol. 19, 95–107 (2002).
Google Scholar
61.
Ratcliffe, R. H. et al. Biotype composition of Hessian fly (Diptera: Cecidomyiidae) populations from the southeastern, midwestern, and northwestern United States and virulence to resistance genes in wheat. J Econ. Entomol. 93, 1319–1328 (2000).
CAS Article Google Scholar
62.
Song, S., Gong, W., Zhu, B. & Huang, X. Wavelength selection and spectral discrimination for paddy rice, with laboratory measurements of hyperspectral leaf reflectance. ISPRS J. Photogram. Remote Sens. 66, 672–682. https://doi.org/10.1016/j.isprsjprs.2011.05.002 (2011).
ADS Article Google Scholar
63.
Dechant, B., Cuntz, M., Vohland, M., Schulz, E. & Doktor, D. Estimation of photosynthesis traits from leaf reflectance spectra: correlation to nitrogen content as the dominant mechanism. Remote Sens. Environ. 196, 279–292. https://doi.org/10.1016/j.rse.2017.05.019 (2017).
ADS Article Google Scholar
64.
Ollinger, S. V. Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol. 189, 375–394. https://doi.org/10.1111/j.1469-8137.2010.03536.x (2011).
CAS Article PubMed Google Scholar
65.
Almeida Trapp, M., De Souza, G. D., Rodrigues-Filho, E., Boland, W. & Mithöfer, A. Validated method for phytohormone quantification in plants. Frontiers in Plant Science 5, https://doi.org/10.3389/fpls.2014.00417 (2014).
66.
Davis, T. S., Bosque-Pérez, N. A., Popova, I. & Eigenbrode, S. D. Evidence for additive effects of virus infection and water availability on phytohormone induction in a staple crop. Frontiers in Ecology and Evolution 3, https://doi.org/10.3389/fevo.2015.00114 (2015). More
