More stories

  • in

    Water column gradients beneath the summer ice of a High Arctic freshwater lake as indicators of sensitivity to climate change

    1.
    Hampton, S. E. et al. Ecology under lake ice. Ecol. Lett. 20, 98–111 (2017).
    Article  Google Scholar 
    2.
    Vincent, W. F., Hobbie, J. E. & Laybourn-Parry, J. Introduction to the limnology of high-latitude lake and river ecosystems. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 1–24 (Oxford, Oxford University Press, 2008).

    3.
    Paquette, M., Fortier, D., Mueller, D. R., Sarrazin, D. & Vincent, W. F. Rapid disappearance of perennial ice on Canada’s most northern lake. Geophys. Res. Lett. 42, 1433–1440 (2015).
    ADS  Article  Google Scholar 

    4.
    Lehnherr, I. et al. The world’s largest High Arctic lake responds rapidly to climate warming. Nat. Commun. 9, 1290. https://doi.org/10.1038/s41467-018-03685-z (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    5.
    Obryk, M. K., Doran, P. T. & Priscu, J. C. Prediction of ice-free conditions for a perennially ice-covered Antarctic lake. J. Geophys. Res. Earth Surf. 124, 686–694 (2019).
    ADS  Article  Google Scholar 

    6.
    Vincent, W. F. et al. Extreme ecosystems and geosystems in the Canadian High Arctic: Ward Hunt Island and vicinity. Ecoscience 18, 236–261 (2011).
    Article  Google Scholar 

    7.
    Spigel, R. H. & Priscu, J. C. Physical limnology of the McMurdo Dry Valleys lakes. In Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica (ed. Priscu, J. C.) 153–187 (London, American Geophysical Union, 1998).

    8.
    Pernica, P., North, R. L. & Baulch, H. M. In the cold light of day: The potential importance of under-ice convective mixed layers to primary producers. Inland Waters 7, 138–150 (2017).
    CAS  Article  Google Scholar 

    9.
    Kelly, J. R. & Scheibling, R. E. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 446, 1–22 (2012).
    ADS  CAS  Article  Google Scholar 

    10.
    Taipale, S. et al. Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat. Microb. Ecol. 71, 165–178 (2013).
    Article  Google Scholar 

    11.
    Mohit, V., Culley, A., Lovejoy, C., Bouchard, F. & Vincent, W. F. Hidden biofilms in a far northern lake and implications for the changing Arctic. NPJ Biofilms Microbiomes 3, 17. https://doi.org/10.1038/s41522-017-0024-3 (2017).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    12.
    Paquette, M., Fortier, D. & Vincent, W. F. Water tracks in the High Arctic: a hydrological network dominated by rapid subsurface flow through patterned ground. Arct. Sci. 3, 334–353 (2017).
    Article  Google Scholar 

    13.
    Vincent, W. F. & Mueller, D. Witnessing ice habitat collapse in the Arctic. Science 370, 1031–1032 (2020).
    ADS  CAS  Article  Google Scholar 

    14.
    MacIntyre, S., Cortés, A. & Sadro, S. Sediment respiration drives circulation and production of CO2 in ice-covered Alaskan arctic lakes. Limnol. Oceanogr. Lett. 3, 302–310 (2018).
    CAS  Article  Google Scholar 

    15.
    Cortés, A. & MacIntyre, S. Mixing processes in small arctic lakes during spring. Limnol. Oceanogr. 65, 260–288 (2020).
    ADS  Article  Google Scholar 

    16.
    Bégin, P. N. et al. The littoral zone of polar lakes: Inshore-offshore contrasts in an ice-covered High Arctic lake. Arct. Sci. 7, 1–24. https://doi.org/10.1139/as-2020-0026 (2021).
    Article  Google Scholar 

    17.
    Bégin, P. N. et al. Extreme warming and regime shift toward amplified variability in a far northern lake. Limnol. Oceanogr. 65, 1–23. https://doi.org/10.1002/lno.11546 (2020).
    Article  Google Scholar 

    18.
    Spaulding, S. A., MCKnight, D. M., Smith, R. L. & Dufford, R. Phytoplankton population dynamics in perennially ice-covered Lake Fryxell, Antarctica. J. Plankton Res. 16, 527–541 (1994).

    19.
    Charvet, S., Vincent, W. F. & Lovejoy, C. Chrysophytes and other protists in High Arctic lakes: molecular gene surveys, pigment signatures and microscopy. Polar Biol. 35, 733–748 (2012).
    Article  Google Scholar 

    20.
    Jones, R. I. Mixotrophy in planktonic protists: an overview. Freshw. Biol. 45, 219–226 (2000).
    Article  Google Scholar 

    21.
    Bonilla, S., Villeneuve, V. & Vincent, W. F. Benthic and planktonic algal communities in a High Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J. Phycol. 41, 1120–1130 (2005).
    CAS  Article  Google Scholar 

    22.
    Quesada, A., Fernández-Valiente, E., Hawes, I. & Howard-Williams, C. Benthic primary production in polar lakes and rivers. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 179–196 (Oxford University Press, Oxford, 2008).
    Google Scholar 

    23.
    Rautio, M. et al. Shallow freshwater ecosystems of the circumpolar Arctic. Ecoscience 18, 204–222 (2011).
    Article  Google Scholar 

    24.
    Markager, S. & Vincent, W. F. Light absorption by phytoplankton: development of a matching parameter for algal photosynthesis under different spectral regimes. J. Plankton Res. 23, 1373–1384 (2001).
    Article  Google Scholar 

    25.
    Duarte, C. M. & Prairie, Y. T. Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8, 862–870 (2005).
    CAS  Article  Google Scholar 

    26.
    Denfeld, B. A., Baulch, H. M., del Giorgio, P. A., Hampton, S. E. & Karlsson, J. A synthesis of carbon dioxide and methane dynamics during the ice-covered period of northern lakes: Under-ice CO 2 and CH 4 dynamics. Limnol. Oceanogr. Lett. 3, 117–131 (2018).
    CAS  Article  Google Scholar 

    27.
    Kling, G. W., Kipphut, G. W. & Miller, M. C. Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251, 298–301 (1991).
    ADS  CAS  Article  Google Scholar 

    28.
    Matveev, A., Laurion, I. & Vincent, W. F. Winter accumulation of methane and its variable timing of release from thermokarst lakes in subarctic peatlands. J. Geophys. Res. Biogeosci. 124, 3521–3535 (2019).
    CAS  Article  Google Scholar 

    29.
    Paquette, M., Fortier, D., Lafrenière, M. & Vincent, W. F. Periglacial slopewash dominated by solute transfers and subsurface erosion on a High Arctic slope. Permafr. Periglac. Process. 31, 472–486 (2020).
    Article  Google Scholar 

    30.
    Negandhi, K. et al. Small thaw ponds: an unaccounted source of methane in the Canadian High Arctic. PLoS ONE 8, e78204. https://doi.org/10.1371/journal.pone.0078204 (2013).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    31.
    Lyons, W. B. & Finlay, J. Biogeochemical processes in high-latitude lakes and rivers. In Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems (eds. Vincent, W. F. & Laybourn-Parry, J.) 137–156 (Oxford University Press, Oxford, 2008).
    Google Scholar 

    32.
    Watanabe, S., Laurion, I., Chokmani, K., Pienitz, R. & Vincent, W. F. Optical diversity of thaw ponds in discontinuous permafrost: a model system for water color analysis. J. Geophys. Res. Biogeosci. 116, G02003. https://doi.org/10.1029/2010jg001380 (2011).
    ADS  Article  Google Scholar 

    33.
    Retamal, L., Vincent, W. F., Martineau, C. & Osburn, C. L. Comparison of the optical properties of dissolved organic matter in two river-influenced coastal regions of the Canadian Arctic. Estuar. Coast. Shelf Sci. 72, 261–272 (2007).
    ADS  Article  Google Scholar 

    34.
    Wauthy, M. et al. Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnol. Oceanogr. Lett. 3, 186–198 (2018).
    CAS  Article  Google Scholar 

    35.
    Murphy, K. R., Stedmon, C. A., Waite, T. D. & Ruiz, G. M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 108, 40–58 (2008).
    CAS  Article  Google Scholar 

    36.
    Jakkila, J., Leppäranta, M., Kawamura, T., Shirasawa, K. & Salonen, K. Radiation transfer and heat budget during the ice season in Lake Pääjärvi Finland. Aquat. Ecol. 43, 681–692 (2009).
    Google Scholar 

    37.
    CEN. Climate station data from Northern Ellesmere Island in Nunavut, Canada, v. 1.7 (2002–2019). Nordicana D1. https://doi.org/10.5885/44985SL-8F203FD3ACCD4138 (2020).

    38.
    Pawlowicz, R. Calculating the conductivity of natural waters. Limnol. Oceanogr. Methods 6, 489–501 (2008).
    CAS  Article  Google Scholar 

    39.
    Prėskienis, V. et al. Seasonal patterns in greenhouse gas emissions from lakes and ponds in a High Arctic polygonal landscape. Limnol. Oceanogr. https://doi.org/10.1002/lno.11660 (2021).
    Article  Google Scholar 

    40.
    Yamamoto, S., Alcauskas, J. B. & Crozier, T. E. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78–80 (1976).
    CAS  Article  Google Scholar 

    41.
    Helms, J. R. et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol. Oceanogr. 53, 955–969 (2008).
    ADS  Article  Google Scholar 

    42.
    Weishaar, J. L. et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37, 4702–4708 (2003).
    ADS  CAS  Article  Google Scholar 

    43.
    Loiselle, S. A. et al. Variability in photobleaching yields and their related impacts on optical conditions in subtropical lakes. J. Photochem. Photobiol. Biol. 95, 129–137 (2009).
    CAS  Article  Google Scholar 

    44.
    McKnight, D. M. et al. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46, 38–48 (2001).
    ADS  CAS  Article  Google Scholar 

    45.
    Murphy, K. R., Stedmon, C. A., Graeber, D. & Bro, R. Fluorescence spectroscopy and multi-way techniques PARAFAC. Anal. Methods 5, 6557–6566 (2013).
    Google Scholar 

    46.
    Murphy, K. R. et al. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ. Sci. Technol. 44, 9405–9412 (2010).
    ADS  CAS  Article  Google Scholar 

    47.
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, Berlin, 2011).
    Google Scholar 

    48.
    IOCCG Protocol Series. Inherent optical property measurements and protocols: absorption coefficient. In Ocean Optics and Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation (eds. Neeley, A. R. & Mannino, A.) vol. 1.0. https://doi.org/10.25607/OBP-119 (2018).

    49.
    Roy, S. Phytoplankton Pigments: Characterization, Chemotaxonomy and Applications in Oceanography (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    50.
    Glew, J. R. Miniature gravity corer for recovering short sediment cores. J. Paleolimnol. 5, 285–287 (1991).
    ADS  Article  Google Scholar 

    51.
    Schneider, T., Grosbois, G., Vincent, W. F. & Rautio, M. Saving for the future: Pre-winter uptake of algal lipids supports copepod egg production in spring. Freshw. Biol. 62, 1063–1072 (2017).
    CAS  Article  Google Scholar 

    52.
    Grosbois, G., Mariash, H., Schneider, T. & Rautio, M. Under-ice availability of phytoplankton lipids is key to freshwater zooplankton winter survival. Sci. Rep. 7, 11543. https://doi.org/10.1038/s41598-017-10956-0 (2017).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar  More

  • in

    Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies

    1.
    Dreyer, D. et al. The Earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian Bogong Moth. Curr. Biol. 28, 2160–2166 (2018).
    CAS  Article  Google Scholar 
    2.
    Guerra, P. A., Gegear, R. J. & Reppert, S. M. A magnetic compass aids monarch butterfly migration. Nat. Commun. 5, 4164 (2014).
    ADS  CAS  Article  Google Scholar 

    3.
    Mouritsen, H. Long-distance navigation and magnetoreception in migratory animals. Nature 558, 50–59 (2018).
    ADS  CAS  Article  Google Scholar 

    4.
    Uebe, R. & Schuler, D. Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14, 621–637 (2016).
    CAS  Article  Google Scholar 

    5.
    Hore, P. J. & Mouritsen, H. The radical-pair mechanism of magnetoreception. Annu. Rev. Biophys. 45, 299–344 (2016).
    CAS  Article  Google Scholar 

    6.
    Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).
    CAS  Article  Google Scholar 

    7.
    Schulten, K., Swenberg, C. E. & Weller, A. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. 111, 1–5 (1978).
    Article  Google Scholar 

    8.
    Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: the radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009).
    ADS  CAS  Article  Google Scholar 

    9.
    Kerpal, C. et al. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception. Nat. Commun. 10, 3707 (2019).
    ADS  Article  Google Scholar 

    10.
    Maeda, K. et al. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc. Natl Acad. Sci. USA 109, 4774–4779 (2012).
    ADS  CAS  Article  Google Scholar 

    11.
    Emery, P. et al. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26, 493–504 (2000).
    CAS  Article  Google Scholar 

    12.
    Zhu, H. et al. The two CRYs of the butterfly. Curr. Biol. 15, R953–R954 (2005).
    CAS  Article  Google Scholar 

    13.
    Zoltowski, B. D. et al. Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proc. Natl Acad. Sci. USA 116, 19449–19457 (2019).
    CAS  Article  Google Scholar 

    14.
    Merlin, C., Beaver, L. E., Taylor, O. R., Wolfe, S. A. & Reppert, S. M. Efficient targeted mutagenesis in the monarch butterfly using zinc-finger nucleases. Genome Res. 23, 159–168 (2013).
    CAS  Article  Google Scholar 

    15.
    Michael, A. K., Fribourgh, J. L., Van Gelder, R. N. & Partch, C. L. Animal cryptochromes: divergent roles in light perception, circadian timekeeping and beyond. Photochem. Photobiol. 93, 128–140 (2017).
    CAS  Article  Google Scholar 

    16.
    Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).
    CAS  Article  Google Scholar 

    17.
    Zhang, Y., Markert, M. J., Groves, S. C., Hardin, P. E. & Merlin, C. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc. Natl Acad. Sci. USA 114, E7516–E7525 (2017).
    CAS  Article  Google Scholar 

    18.
    Fedele, G. et al. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster. PLoS Genet. 10, e1004804 (2014).
    Article  Google Scholar 

    19.
    Fedele, G., Green, E. W., Rosato, E. & Kyriacou, C. P. An electromagnetic field disrupts negative geotaxis in Drosophila via a CRY-dependent pathway. Nat. Commun. 5, 4391 (2014).
    ADS  CAS  Article  Google Scholar 

    20.
    Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018 (2008).
    ADS  CAS  Article  Google Scholar 

    21.
    Gegear, R. J., Foley, L. E., Casselman, A. & Reppert, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807 (2010).
    ADS  CAS  Article  Google Scholar 

    22.
    Foley, L. E., Gegear, R. J. & Reppert, S. M. Human cryptochrome exhibits light-dependent magnetosensitivity. Nat. Commun. 2, 356 (2011).
    ADS  Article  Google Scholar 

    23.
    Kutta, R. J., Archipowa, N., Johannissen, L. O., Jones, A. R. & Scrutton, N. S. Vertebrate cryptochromes are vestigial flavoproteins. Sci. Rep. 7, 44906 (2017).
    ADS  CAS  Article  Google Scholar 

    24.
    Zhu, H., Gegear, R. J., Casselman, A., Kanginakudru, S. & Reppert, S. M. Defining behavioral and molecular differences between summer and migratory monarch butterflies. BMC Biol. 7, 14 (2009).
    Article  Google Scholar 

    25.
    Lin, C., Top, D., Manahan, C. C., Young, M. W. & Crane, B. R. Circadian clock activity of cryptochrome relies on tryptophan-mediated photoreduction. Proc. Natl Acad. Sci. USA 115, 3822–3827 (2018).
    CAS  Article  Google Scholar 

    26.
    Nohr, D. et al. Extended electron-transfer in animal cryptochromes mediated by a tetrad of aromatic amino acids. Biophys. J. 111, 301–311 (2016).
    ADS  CAS  Article  Google Scholar 

    27.
    Nohr, D. et al. Determination of radical-radical distances in light-active proteins and their implication for biological magnetoreception. Angew. Chem. Int. Ed. Engl. 56, 8550–8554 (2017).
    CAS  Article  Google Scholar 

    28.
    Palomares, L. A., Joosten, C. E., Hughes, P. R., Granados, R. R. & Shuler, M. L. Novel insect cell line capable of complex N-glycosylation and sialylation of recombinant proteins. Biotechnol. Prog. 19, 185–192 (2003).
    CAS  Article  Google Scholar 

    29.
    Bazalova, O. et al. Cryptochrome 2 mediates directional magnetoreception in cockroaches. Proc. Natl Acad. Sci. USA 113, 1660–1665 (2016).
    ADS  CAS  Article  Google Scholar 

    30.
    Merlin, C., Gegear, R. J. & Reppert, S. M. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science 325, 1700–1704 (2009).
    ADS  CAS  Article  Google Scholar 

    31.
    Yoshii, T., Ahmad, M. & Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 7, e1000086 (2009).
    Article  Google Scholar 

    32.
    Worster, S., Mouritsen, H. & Hore, P. J. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J. R. Soc. Interface 14, (2017).

    33.
    Oztürk, N., Song, S.-H., Selby, C. P. & Sancar, A. Animal type 1 cryptochromes. Analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J. Biol. Chem. 283, 3256–3263 (2008).
    Article  Google Scholar 

    34.
    Wu, H., Scholten, A., Einwich, A., Mouritsen, H. & Koch, K.-W. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina. Sci. Rep. 10, 7364 (2020).
    ADS  CAS  Article  Google Scholar 

    35.
    Wan, G.-J. et al. Reduced geomagnetic field may affect positive phototaxis and flight capacity of a migratory rice planthopper. Anim. Behav. 121, 107–116 (2016).
    Article  Google Scholar 

    36.
    Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31, 227–229 (2013).
    CAS  Article  Google Scholar 

    37.
    Iiams, S. E., Lugena, A. B., Zhang, Y., Hayden, A. N. & Merlin, C. Photoperiodic and clock regulation of the vitamin A pathway in the brain mediates seasonal responsiveness in the monarch butterfly. Proc. Natl Acad. Sci. USA 116, 25214–25221 (2019).
    CAS  Article  Google Scholar 

    38.
    Markert, M. J. et al. Genomic access to monarch migration using TALEN and CRISPR/Cas9-mediated targeted mutagenesis. G3 (Bethesda) 6, 905–915 (2016).
    CAS  Article  Google Scholar 

    39.
    Jao, L. E., Wente, S. R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl Acad. Sci. USA 110, 13904–13909 (2013).
    ADS  CAS  Article  Google Scholar 

    40.
    Kim, J. M., Kim, D., Kim, S. & Kim, J. S. Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat. Commun. 5, 3157 (2014).
    ADS  Article  Google Scholar 

    41.
    Zhu, H. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 6, e4 (2008).
    Article  Google Scholar  More

  • in

    Physical and ecological isolation contribute to maintain genetic differentiation between fire salamander subspecies

    Abellán P, Svenning JC (2014) Refugia within refugia–patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biol J Linn Soc 113:13–28
    Article  Google Scholar 

    Alarcón-Ríos L, Nicieza AG, Kaliontzopoulou A, Buckley D, Velo-Antón G (2020) Evolutionary history and not heterochronic modifications associated with viviparity drive head shape differentiation in a reproductive polymorphic species, Salamandra salamandra. Evol Biol 47:43–55
    Article  Google Scholar 

    Alcobendas M, Castanet J (2000) Bone growth plasticity among populations of Salamandra salamandra: interactions between internal and external factors. Herpetologica 56:14–26
    Google Scholar 

    Alcobendas M, Buckley D, Tejedo M (2004) Variability in survival, growth and metamorphosis in the larval fire salamander (Salamandra salamandra): effects of larval birth size, sibship and environment. Herpetologica 60:232–245
    Article  Google Scholar 

    Antunes B, Lourenço A, Caeiro-Dias G, Dinis M, Gonçalves H, Martínez-Solano I et al. (2018) Combining phylogeography and landscape genetics to infer the evolutionary history of a short-range Mediterranean relict, Salamandra salamandra longirostris. Conserv Genet 19:1411–1424
    CAS  Article  Google Scholar 

    Arntzen JW, van Belkom J (2020) ‘Mainland-island’ population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation. Sci Rep 10:1–15
    Article  CAS  Google Scholar 

    Balkenhol N, Cushman SA, Waits LP, Storfer A (2016) Current status, future opportunities, and remaining challenges in landscape genetics. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP (eds) Landscape genetics: concepts, methods, applications, John Wiley and Sons Ltd, Chichester, pp 247–255.

    Barton NH, Gale KS (1993) Genetic analysis of hybrid zones. Hybrid zones and the evolutionary process. In: Harrison RG (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, p 13–45
    Google Scholar 

    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 57:289–300
    Google Scholar 

    Beukema W, Nicieza AG, Lourenço A, Velo‐Antón G (2016) Colour polymorphism in Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes. J Zool Syst Evol 54:127–136
    Article  Google Scholar 

    Bisconti R, Porretta D, Arduino P, Nascetti G, Canestrelli D (2018) Hybridization and extensive mitochondrial introgression among fire salamanders in peninsular Italy. Sci Rep 8:13187
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Bosch J, López-Bueis I (1994) Comparative study of the dorsal pattern in Salamandra salamandra bejarae (Wolterstorff, 1934) and S. s. almanzoris (Müller & Hellmich, 1935). Herpetol J 4:46–48
    Google Scholar 

    Burgon JD, Vieites DR, Jacobs A, Weidt SK, Gunter HM, Steinfartz S et al. (2020) Functional colour genes and signals of selection in colour polymorphic salamanders. Mol Ecol 29:1284–1299
    CAS  PubMed  Article  Google Scholar 

    Burgon JD, Vences M, Steinfartz S, Bogaerts S, Bonato L, Donaire-Barroso D, Martínez-Solano I, Velo-Antón G, Vieites DR, Mable BK, Elmer KR (2021) Phylogenomic inference of species and subspecies diversity in the Pal earctic salamander genus Salamandra. Molecular Phylogenetics and Evolution 157:107063

    Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113
    CAS  PubMed  Article  Google Scholar 

    Clarke RT, Rothery P, Raybould AF (2002) Confidence limits for regression relationships between distance matrices: estimating gene flow with distance. JABES 7:361
    Google Scholar 

    Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240
    Article  Google Scholar 

    Czypionka T, Goedbloed DJ, Steinfartz S, Nolte AW (2018) Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Mol Ecol 27:2698–2713
    PubMed  Article  Google Scholar 

    Dinis M, Joger U, Slimani T, Martínez-Freiría F, Merabet K, Donaire D et al. (2018) Allopatric diversification and evolutionary melting pot in a North African Palearctic relict: the biogeographic history of Salamandra algira. Mol Phylogenet Evol 130:81–91
    PubMed  Article  Google Scholar 

    Domínguez-Villar D, Carrasco RM, Pedraza J, Cheng H, Edwards R, Willenbring JK (2013) Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci Rep. 3:2034
    PubMed  PubMed Central  Article  Google Scholar 

    Dufresnes C, Pribille M, Alard B, Dubey S, Perrin N, Gonçalves H et al. (2020) Integrating hybrid zone analyses in species delimitation: lessons from two anuran radiations of the Western Mediterranean. Heredity 124:423–438
    CAS  PubMed  Article  Google Scholar 

    Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361
    Article  Google Scholar 

    Emel SL, Olson DH, Knowles LL, Storfer A (2019) Comparative landscape genetics of two endemic torrent salamander species, Rhyacotriton kezeri and R. variegatus: implications for forest management and species conservation. Conserv Genet 20:801–815
    CAS  Article  Google Scholar 

    Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040
    PubMed  Article  Google Scholar 

    Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Ficetola GF, Colleoni E, Renaud J, Scali S, Padoa‐Schioppa E, Thuiller W (2016) Morphological variation in salamanders and their potential response to climate change. Glob Chang Biol 22:2013–2024
    PubMed  PubMed Central  Article  Google Scholar 

    Fletcher R, Fortin M (2018) Spatial ecology and conservation modeling. Springer International Publishing, Cham
    Google Scholar 

    Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:e97122
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Francis RM (2016) pophelper: An r package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32
    PubMed  Article  CAS  Google Scholar 

    García-París M, Alcobendas M, Alberch P (1998) Influence of the Guadalquivir river basin on mitochondrial DNA evolution of Salamandra salamandra (Caudata: Salamandridae) from southern Spain. Copeia 1998:173–176
    Article  Google Scholar 

    García-París M, Alcobendas M, Buckley D, Wake DB (2003) Dispersal of viviparity across contact zones in iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57:129–143

    Gomez A, Lunt DH (2007) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds). Phylogeography of Southern European Refugia. Springer: Dordrecht. pp 155–188

    Gray LN, Barley AJ, Poe S, Thomson RC, Nieto‐Montes de Oca A, Wang IJ (2019) Phylogeography of a widespread lizard complex reflects patterns of both geographic and ecological isolation. Mol Ecol 28:644–657
    PubMed  Article  Google Scholar 

    Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano I (2017a) Present and past climatic effects on the current distribution and genetic diversity of the Iberian spadefoot toad (Pelobates cultripes): an integrative approach. J Biogeogr 44:245–258
    Article  Google Scholar 

    Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano I (2017b) Integrative inference of population history in the Ibero-Maghrebian endemic Pleurodeles waltl (Salamandridae). Mol Phylogenet Evol 112:122–137
    PubMed  Article  Google Scholar 

    Hendrix R, Schmidt BR, Schaub M, Krause ET, Steinfartz S (2017) Differentiation of movement behaviour in an adaptively diverging salamander population. Mol Ecol 26:6400–6413
    PubMed  Article  Google Scholar 

    Hendrix R, Susanne Hauswaldt J, Veith M, Steinfartz S (2010) Strong correlation between cross-amplification success and genetic distance across all members of “True Salamanders” (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci. Mol Ecol Resour 10:1038–1047
    CAS  PubMed  Article  Google Scholar 

    Hendry AP (2017) Eco-evolutionary dynamics. Princeton University Press, Princeton
    Google Scholar 

    Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913
    CAS  Article  Google Scholar 

    Hijmans RJ, Van Etten J (2016) raster: Geographic Data Analysis and Modeling. R package version 2.5-8. Available from: http://CRAN.R-project.org/package=raster

    Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:1–94
    Article  Google Scholar 

    Kalinowski ST (2005) HP-RARE 10: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189
    CAS  Article  Google Scholar 

    Keenan K, Mcginnity P, Cross TF, Crozier WW, Prodöhl PA (2013) DiveRsity: an R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol Evol 4:782–788
    Article  Google Scholar 

    Linnaeus C (1758) Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. 10th Edition. Volume 1. Stockholm, Sweden: L. Salvii

    Lourenço A, Gonçalves J, Carvalho F, Wang IJ, Velo-Antón G (2019) Comparative landscape genetics reveals the evolution of viviparity reduces genetic connectivity in fire salamanders. Mol Ecol 28:4573–4591
    PubMed  Article  CAS  Google Scholar 

    Maia-Carvalho B, Vale CG, Sequeira F, Ferrand N, Martínez-Solano I, Gonçalves H (2018) The roles of allopatric fragmentation and niche divergence in intraspecific lineage diversification in the common midwife toad (Alytes obstetricans). J Biogeogr 45:2146–2158
    Article  Google Scholar 

    Martínez-Freiría F, Freitas I, Zuffi MAL, Golay P, Ursenbacher S, Velo-Antón G (2020) Climatic refugia boosted allopatric diversification in Western Mediterranean vipers. J Biogeogr 47:1698–1713
    Article  Google Scholar 

    Martínez-Solano I (2006) Atlas de distribución y estado de conservación de los anfibios de la Comunidad de Madrid. Graellsia 62:253–291
    Article  Google Scholar 

    Martínez-Solano I, Alcobendas M, Buckley D, García-París M (2005) Molecular characterisation of the endangered Salamandra salamandra almanzoris (Caudata, Salamandridae). Ann Zool Fenn 42:57–68
    Google Scholar 

    McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561
    PubMed  PubMed Central  Article  Google Scholar 

    McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Concepts and synthesis emphasizing new ideas to stimulate research in ecology using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724
    PubMed  Article  Google Scholar 

    Méndez L, Perdices A, Machordom A (2019) Genetic structure and diversity of the Iberian populations of the freshwater blenny Salaria fluviatilis (Asso, 1801) and its conservation implications. Conserv Genet 20:1223–1236
    Article  Google Scholar 

    Miraldo A, Hewitt GM, Paulo OS, Emerson BC (2011) Phylogeography and demographic history of Lacerta lepida in the Iberian Peninsula: multiple refugia, range expansions and secondary contact zones. BMC Evol Biol 11:170
    PubMed  PubMed Central  Article  Google Scholar 

    Mulder KP, Rodriguez NC, Grant EHC, Brand A, Fleischer RC (2019) North ‐ facing slopes and elevation shape asymmetric genetic structure in the range ‐ restricted salamander Plethodon shenandoah. Ecol Evol 9:5094–5105
    PubMed  PubMed Central  Article  Google Scholar 

    Noguerales V, Cordero PJ, Ortego J (2017) Testing the role of ancient and contemporary landscapes on structuring genetic variation in a specialist grasshopper. Ecol Evol 7:3110–3122
    PubMed  PubMed Central  Article  Google Scholar 

    Nosil P (2012) Ecological speciation. Oxford University Press, New York
    Google Scholar 

    Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295
    Article  Google Scholar 

    Pereira RJ, Martínez-Solano I, Buckley D (2016) Hybridization during altitudinal range shifts: nuclear introgression leads to extensive cyto-nuclear discordance in the fire salamander. Mol Ecol 25:1551–1565
    CAS  PubMed  Article  Google Scholar 

    Peterman WE (2018) ResistanceGA: an R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol Evol 9:1638–1647
    Article  Google Scholar 

    Phillips SB, Aneja VP, Kang D, Arya SP (2006) Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. IJGEI 6:231–252
    Google Scholar 

    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959
    CAS  PubMed  PubMed Central  Google Scholar 

    Prunier JG, Colyn M, Legendre X, Nimon KF, Flamand MC (2015) Multicollinearity in spatial genetics: Separating the wheat from the chaff using commonality analyses. Mol Ecol 24:263–283
    CAS  Article  Google Scholar 

    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://wwwR-project.org/
    Google Scholar 

    Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106
    PubMed  PubMed Central  Article  Google Scholar 

    Sánchez‐Montes G, Wang J, Ariño AH, Martínez‐Solano I (2018) Mountains as barriers to gene flow in amphibians: quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. J Biogeogr 45:318–331
    Article  Google Scholar 

    Sánchez-Montes G, Recuero E, Barbosa AM, Martínez-Solano I (2019) Complementing the Pleistocene biogeography of European amphibians: testimony from a southern Atlantic species. J Biogeogr 46:568–583
    Article  Google Scholar 

    Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15
    CAS  Article  Google Scholar 

    Silva P, López-Bao JV, Llaneza L, Álvares F, Lopes S, Blanco JC et al. (2018) Cryptic population structure reveals low dispersal in Iberian wolves. Sci Rep 8:14108
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    Steinfartz S, Küsters D, Tautz D (2004) Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the fire salamander Salamandra salamandra (Amphibia: Caudata). Mol Ecol Notes 4:626–628
    CAS  Article  Google Scholar 

    Velo-Antón G, García-París M, Galán P, Cordero Rivera A (2007) The evolution of viviparity in Holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J Zool Syst Evol 45:345–352
    Article  Google Scholar 

    Velo‐Antón G, Parra JL, Parra‐Olea G, Zamudio KR (2013) Tracking climate change in a dispersal‐limited species: reduced spatial and genetic connectivity in a montane salamander. Mol Ecol 22:3261–3278
    PubMed  Article  Google Scholar 

    Velo-Antón G, Buckley D (2015) Salamandra común—Salamandra salamandra. In: Salvador A, Martínez-Solano I (eds), Enciclopedia Virtual de los Vertebrados Españoles, Museo Nacional de Ciencias Naturales, CSIC www.vertebradosibericos.org

    Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67:3403–3411
    PubMed  Article  Google Scholar 

    Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23:5649–5662
    PubMed  PubMed Central  Article  Google Scholar 

    Wang IJ, Glor RE, Losos JB (2013) Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol Lett 16:175–182
    PubMed  Article  Google Scholar 

    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370
    CAS  Google Scholar 

    Winiarski KJ, Peterman WE, Whiteley AR, McGarigal K (2020) Multiscale resistant kernel surfaces derived from inferred gene flow: an application with vernal pool breeding salamanders. Mol Ecol Resour 20:97–113
    CAS  PubMed  Article  Google Scholar 

    Wogan GOU, Yuan ML, Mahler DL, Wang IJ (2020) Genome-wide epigenetic isolation by environment in a widespread Anolis lizard. Mol Ecol 29:40–55
    CAS  PubMed  Article  Google Scholar 

    Wright S (1943) Isolation by distance. Genetics 28:114–138
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Ecological adaptation drives wood frog population divergence in life history traits

    Adams DC, Church JO (2008) Amphibians do not follow Bergmann’s rule. Evol: Int J Org Evol 62(2):413–420
    Article  Google Scholar 

    Alho J, Herczeg G, Laugen A, Räsänen K, Laurila A, Merilä J (2011) Allen’s rule revisited: quantitative genetics of extremity length in the common frog along a latitudinal gradient. J Evol Biol 24(1):59–70
    CAS  PubMed  Article  Google Scholar 

    Allen JA (1877) The influence of physical conditions in the genesis of species. Radic Rev 1:108–140
    Google Scholar 

    Amado TF, Bidau CJ, Olalla-Tárraga MÁ (2019) Geographic variation of body size in New World anurans: energy and water in a balance. Ecography 42(3):456–466
    Article  Google Scholar 

    Ashton KG (2002) Do amphibians follow Bergmann’s rule? Can J Zool 80(4):708–716
    Article  Google Scholar 

    Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01
    Article  Google Scholar 

    Belden LK, Rubbo MJ, Wingfield JC, Kiesecker JM (2007) Searching for the physiological mechanism of density dependence: does corticosterone regulate tadpole responses to density? Physiol Biochem Zool 80(4):444–451
    CAS  PubMed  Article  Google Scholar 

    Berven KA (1982a) The genetic basis of altitudinal variation in the wood frog Rana sylvatica II. An experimental analysis of larval development. Oecologia 52(3):360–369
    PubMed  Article  Google Scholar 

    Berven KA (1982b) The genetic basis of altitudinal variation in the wood frog Rana sylvatica. I. An experimental analysis of life history traits. Evolution 36(5):962–983
    PubMed  Google Scholar 

    Berven KA (1990) Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71(4):1599–1608
    Article  Google Scholar 

    Berven KA (2009) Density dependence in the terrestrial stage of wood frogs: evidence from a 21-year population study. Copeia 2009(2):328–338
    Article  Google Scholar 

    Berven KA, Gill DE (1983) Interpreting geographic-variation in life-history traits. Am Zool 23(1):85–97
    Article  Google Scholar 

    Bijlsma R, Loeschcke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5(2):117–129
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Bjornstad ON (2020) ncf: spatial covariance functions. R package version 1.2-9. https://cran.r-project.org/package=ncf

    Castellano S, Balletto E (2002) Is the partial Mantel test inadequate? Evolution 56(9):1871–1873
    PubMed  Article  PubMed Central  Google Scholar 

    Chaparro-Pedraza PC, de Roos AM (2020) Density-dependent effects of mortality on the optimal body size to shift habitat: Why smaller is better despite increased mortality risk. Evolution 74(5):831–841
    PubMed  PubMed Central  Article  Google Scholar 

    Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10(6):248–252
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Cordero GA, Epps CW (2012) From desert to rainforest: phenotypic variation in functionally important traits of bushy-tailed woodrats (Neotoma cinerea) across two climatic extremes. J Mamm Evol 19(2):135–153
    Article  Google Scholar 

    Costanzo JP, do Amaral MCF, Rosendale AJ, Lee RE (2013) Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. J Exp Biol 216(18):3461–3473
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Crespi EJ, Warne RW (2013) Environmental conditions experienced during the tadpole stage alter post-metamorphic glucocorticoid response to stress in an amphibian. Integr Comp Biol 53(6):989–1001
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Dahl E, Orizaola G, Nicieza AG, Laurila A (2012) Time constraints and flexibility of growth strategies: geographic variation in catch‐up growth responses in amphibian larvae. J Anim Ecol 81(6):1233–1243
    PubMed  Article  PubMed Central  Google Scholar 

    Davenport JM, Hossack BR (2016) Reevaluating geographic variation in life‐history traits of a widespread Nearctic amphibian. J Zool 299(4):304–310
    Article  Google Scholar 

    Denver RJ (1997) Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm Behav 31(2):169–179
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, New York, NY USA

    Dorcas ME, Gibbons JW (2008) Frogs and Toads of the Southeast. University of Georgia Press, Athens, GA, USA

    Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G et al. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36(1):27–46
    Article  Google Scholar 

    Duncan SI, Crespi EJ, Mattheus NM, Rissler LJ (2015) History matters more when explaining genetic diversity within the context of the core–periphery hypothesis. Mol Ecol 24(16):4323–4336
    PubMed  Article  PubMed Central  Google Scholar 

    Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Diversity Distrib 17(1):43–57
    Article  Google Scholar 

    Fitzpatrick MJ, Zuckerberg B, Pauli JN, Kearney MR, Thompson KL, Werner LC et al. (2019) Modeling the distribution of niche space and risk for a freeze‐tolerant ectotherm, Lithobates sylvaticus. Ecosphere 10(7):e02788
    Article  Google Scholar 

    Fox J, Weisberg S (2019) An R Companion to Applied Regression, 3rd Edition. Sage, Thousand Oaks, CA

    GBIF.org (2014) GBIF Occurrence Download. https://doi.org/10.15468/dl.e3k4ag

    Gouveia SF, Correia I (2016) Geographical clines of body size in terrestrial amphibians: water conservation hypothesis revisited. J Biogeogr 43(10):2075–2084
    Article  Google Scholar 

    Hahn DA, Martin AR, Porter SD (2008) Body size, but not cooling rate, affects supercooling points in the red imported fire ant, Solenopsis invicta. Environ Entomol 37(5):1074–1080
    PubMed  Article  Google Scholar 

    Hangartner S, Laurila A, Rasanen K (2012) Adaptive divergence in moor frog (Rana arvalis) populations along an acidification gradient: inferences from Q(st) -F(st) correlations. Evolution 66(3):867–881
    PubMed  PubMed Central  Article  Google Scholar 

    Hijmans R, Cameron S, Parra J, Jones P, Jarvis A, Richardson K (2005) WorldClim version 1.3. University of California, Berkeley
    Google Scholar 

    Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landsc Ecol 21(6):797–807
    Article  Google Scholar 

    Kawakami T, Morgan TJ, Nippert JB, Ocheltree TW, Keith R, Dhakal P et al. (2011) Natural selection drives clinal life history patterns in the perennial sunflower species, Helianthus maximiliani. Mol Ecol 20(11):2318–2328
    PubMed  Article  Google Scholar 

    Kierepka E, Latch E (2015) Performance of partial statistics in individual‐based landscape genetics. Mol Ecol Resour 15(3):512–525
    CAS  PubMed  Article  Google Scholar 

    Kingsolver JG, Diamond SE (2011) Phenotypic selection in natural populations: what limits directional selection? Am Naturalist 177(3):346–357
    Article  Google Scholar 

    Kingsolver JG, Pfennig DW (2004) Individual-level selection as a cause of cope’s rule of phyletic size increase. Evolution 58(7):1608–1612
    PubMed  Article  Google Scholar 

    Laugen AT, Laurila A, Jönsson KI, Söderman F, Merilä J (2005) Do common frogs (Rana temporaria) follow Bergmann’s rule? Evol Ecol Res 7(5):717–731
    Google Scholar 

    Laugen AT, Laurila A, Räsänen K, Merilä J (2003) Latitudinal countergradient variation in the common frog (Rana temporaria) development rates–evidence for local adaptation. J Evol Biol 16(5):996–1005
    CAS  PubMed  Article  Google Scholar 

    Laurila A, Karttunen S, Merila J (2002) Adaptive phenotypic plasticity and genetics of larval life histories in two Rana temporaria populations. Evolution 56(3):617–627
    PubMed  Article  Google Scholar 

    Lee-Yaw JA, Irwin JT, Green DM (2008) Postglacial range expansion from northern refugia by the wood frog, Rana sylvatica. Mol Ecol 17(3):867–884
    CAS  PubMed  Article  Google Scholar 

    Leinonen T, Cano JM, Mäkinen H, Merilä J (2006) Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J Evol Biol 19(6):1803–1812
    CAS  PubMed  Article  Google Scholar 

    Leinonen T, McCairns RJ, O’Hara RB, Merila J (2013a) Q(ST)-F(ST) comparisons: evolutionary and ecological insights from genomic heterogeneity. Nat Rev Genet 14(3):179–190
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Leinonen T, McCairns RS, O’hara RB, Merilä J (2013b) Q ST–F ST comparisons: evolutionary and ecological insights from genomic heterogeneity. Nat Rev Genet 14(3):179
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Lenker MA, Savage AE, Becker CG, Rodriguez D, Zamudio KR (2014) Batrachochytrium dendrobatidis infection dynamics vary seasonally in upstate New York, USA. Dis Aquat Organ 111(1):51–60
    PubMed  Article  Google Scholar 

    Lind M, Johansson F (2011) Testing the role of phenotypic plasticity for local adaptation: growth and development in time‐constrained Rana temporaria populations. J Evol Biol 24(12):2696–2704
    CAS  PubMed  Article  Google Scholar 

    Lind MI, Ingvarsson PK, Johansson H, Hall D, Johansson F (2011) Gene flow and selection on phenotypic plasticity in an island system of Rana temporaria. Evolution 65(3):684–697
    PubMed  Article  Google Scholar 

    Lindgren B, Laurila A (2009) Physiological variation along a geographical gradient: is growth rate correlated with routine metabolic rate in Rana temporaria tadpoles? Biol J Linn Soc 98(1):217–224
    Article  Google Scholar 

    Lomolino MV, Heaney LR (2004) Frontiers of biogeography: new directions in the geography of nature. Sinauer Associates, Sunderland, MA, USA

    Manis ML, Claussen DL (1986) Environmental and genetic influences on the thermal physiology of Rana sylvatica. J Therm Biol 11(1):31–36
    Article  Google Scholar 

    Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2 Part 1):209–220
    CAS  Google Scholar 

    Martof BS, Humphries RL (1959) Geographic variation in the wood frog Rana sylvatica. Am Midl Naturalist 61(2):350–389
    Article  Google Scholar 

    Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14(6):892–903
    Article  Google Scholar 

    Merilä J, Laurila A, Laugen AT, Räsänen K, Pahkala M (2000) Plasticity in age and size at metamorphosis in Rana temporaria‐comparison of high and low latitude populations. Ecography 23(4):457–465
    Article  Google Scholar 

    Mitchell-Olds T, Willis JH, Goldstein DB (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat Rev Genet 8(11):845–856
    CAS  Article  Google Scholar 

    Morrison C, Hero JM (2003) Geographic variation in life‐history characteristics of amphibians: a review. J Anim Ecol 72(2):270–279
    Article  Google Scholar 

    Mueller LD (1997) Theoretical and empirical examination of density-dependent selection. Annu Rev Ecol Syst 28(1):269–288
    Article  Google Scholar 

    Muir AP, Biek R, Thomas R, Mable BK (2014) Local adaptation with high gene flow: temperature parameters drive adaptation to altitude in the common frog (Rana temporaria). Mol Ecol 23(3):561–574
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Nosil P, Vines TH, Funk DJ (2005) Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59(4):705–719
    PubMed  PubMed Central  Google Scholar 

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R et al. (2019) vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan

    Olalla-Tárraga MÁ, Rodríguez MÁ (2007) Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Glob Ecol Biogeogr 16(5):606–617
    Article  Google Scholar 

    Orizaola G, Quintela M, Laurila A (2010) Climatic adaptation in an isolated and genetically impoverished amphibian population. Ecography 33(4):730–737
    Article  Google Scholar 

    Padgham M, Sumner MD (2020) geodist: fast, dependency-free geodesic distance calculations. R package version 0.0.6. https://CRAN.R-project.org/package=geodist

    Palo JU, O’Hara RB, Laugen AT, Laurila A, Primmer CR, Merila J (2003) Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12(7):1963–1978
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Peters RH, Peters RH (1986) The ecological implications of body size, vol 2. Cambridge University Press, New York, NY, USA

    Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3-4):231–259
    Article  Google Scholar 

    Pigliucci M (2001) Phenotypic plasticity: beyond nature and nurture. Johns Hopkins University Press, Baltimore, MA, USA

    Powell R, Conant R, Collins JT (2016) Peterson field guide to reptiles and amphibians of eastern and central North America. Houghton Mifflin Harcourt, New York, NY, USA

    R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/

    Raufaste N, Rousset F (2001) Are partial Mantel tests adequate? Evolution 55(8):1703–1705
    CAS  PubMed  Article  Google Scholar 

    Rice KC, Jung RE (2004) Water-quality and amphibian population data for Maryland, Washington, DC, and Virginia, 2001–2004. US Geological Survey

    Richter-Boix A, Quintela M, Kierczak M, Franch M, Laurila A (2013) Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol Ecol 22(5):1322–1340
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Richter-Boix A, Teplitsky C, Rogell B, Laurila A (2010) Local selection modifies phenotypic divergence among Rana temporaria populations in the presence of gene flow. Mol Ecol 19(4):716–731
    PubMed  Article  Google Scholar 

    Richter‐Boix A, Katzenberger M, Duarte H, Quintela M, Tejedo M, Laurila A (2015) Local divergence of thermal reaction norms among amphibian populations is affected by pond temperature variation. Evolution 69(8):2210–2226
    PubMed  Article  Google Scholar 

    Rissler LJ (2016) Union of phylogeography and landscape genetics. Proc Natl Acad Sci USA 113(29):8079–8086
    CAS  PubMed  Article  Google Scholar 

    Roff D (1980) Optimizing development time in a seasonal environment: the ‘ups and downs’ of clinal variation. Oecologia 45(2):202–208
    PubMed  Article  Google Scholar 

    Santos M, Borash DJ, Joshi A, Bounlutay N, Mueller LD (1997) Density‐dependent natural selection in Drosophila: evolution of growth rate and body size. Evolution 51(2):420–432
    PubMed  Google Scholar 

    Schemske DW, Bierzychudek P (2007) Spatial differentiation for flower color in the desert annual Linanthus parryae: was Wright right? Evol: Int J Org Evol 61(11):2528–2543
    Article  Google Scholar 

    Schueler FW (1975) Geographic variation in the size of Rana septentrionalis in Quebec, Ontario, and Manitoba. J Herpetol 9(2):177–185
    Article  Google Scholar 

    Semlitsch RD, Scott DE, Pechmann JHK (1988) Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum. Ecology 69(1):184–192
    Article  Google Scholar 

    Shafer AB, Wolf JB (2013) Widespread evidence for incipient ecological speciation: a meta‐analysis of isolation‐by‐ecology. Ecol Lett 16(7):940–950
    PubMed  PubMed Central  Article  Google Scholar 

    Sheridan JA, Caruso NM, Apodaca JJ, Rissler LJ (2018) Shifts in frog size and phenology: testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming. Ecol Evol 8(2):1316–1327
    PubMed  Article  PubMed Central  Google Scholar 

    Smith-Gill SJ, Berven KA (1979) Predicting amphibian metamorphosis. Am Naturalist 113(4):563–585
    Article  Google Scholar 

    Spitze K (1993) Population structure in Daphnia obtusa: quantitative genetic and allozymic variation. Genetics 135(2):367–374
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    Stevens CE, Paszkowski CA (2004) Using chorus-size ranks from call surveys to estimate reproductive activity of the wood frog (Rana sylvatica). J Herpetol 38(3):404–410
    Article  Google Scholar 

    Therneau TM (2020) coxme: Mixed effects cox models. R package version 2.2-16. https://CRAN.R-project.org/package=coxme

    Thomassen HA, Cheviron ZA, Freedman AH, Harrigan RJ, Wayne RK, Smith TB (2010) Spatial modelling and landscape‐level approaches for visualizing intra‐specific variation. Mol Ecol 19(17):3532–3548
    PubMed  Article  Google Scholar 

    Van Buskirk J (2017) Spatially heterogeneous selection in nature favors phenotypic plasticity in anuran larvae. Evolution 71(6):1670–1685
    PubMed  Article  PubMed Central  Google Scholar 

    Venables W, Ripley B (2002) Modern Applied Statistics with S. 4th Edition. Springer, New York, NY, USA

    Wang IJ, Bradburd GS (2014) Isolation by environment. Mol Ecol 23(23):5649–5662
    Article  Google Scholar 

    Wang IJ, Summers K (2010) Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison‐dart frog. Mol Ecol 19(3):447–458
    PubMed  Article  PubMed Central  Google Scholar 

    Warne RW, Crespi EJ (2015) Larval growth rate and sex determine resource allocation and stress responsiveness across life stages in juvenile frogs. J Exp Zool A Ecol Genet Physiol 323(3):191–201
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Weber MM, Stevens RD, Diniz‐Filho JAF, Grelle CEV (2017) Is there a correlation between abundance and environmental suitability derived from ecological niche modelling? A meta‐analysis. Ecography 40(7):817–828
    Article  Google Scholar 

    Weir L (2001) NAAMP unified protocol: call surveys. North American Amphibian Monitoring Program. Patuxtent Wildlife Research Center, Patuxtent, MA, USA

    Whitlock MC (2008) Evolutionary inference from QST. Mol Ecol 17(8):1885–1896
    PubMed  Article  PubMed Central  Google Scholar 

    Whitlock MC, Guillaume F (2009) Testing for spatially divergent selection: comparing QST to FST. Genetics 183(3):1055–1063
    PubMed  PubMed Central  Article  Google Scholar 

    Whitlock MC, Phillips PC (2000) The exquisite corpse: a shifting view of the shifting balance. Trends Ecol Evol 15(9):347–348
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Wilbur HM (1976) Density‐dependent aspects of metamorphosis in Ambystoma and Rana sylvatica. Ecology 57(6):1289–1296
    Article  Google Scholar 

    Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182(4119):1305–1314
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    Wright S (1943) Isolation by distance. Genetics 28(2):114
    CAS  PubMed  PubMed Central  Google Scholar  More

  • in

    Implications of monsoon season and UVB radiation for COVID-19 in India

    1.
    Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Chadha, M. S. et al. Dynamics of influenza seasonality at sub-regional levels in India and implications for vaccination timing. PLoS ONE 10, e0124122 (2015).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    3.
    Dash, N., Rose, W. & Nallasamy, K. India’s lockdown exit: Are we prepared to lock horns with COVID-19 and dengue in the rainy season?. Pediatr. Res. https://doi.org/10.1038/s41390-020-1063-7 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    4.
    Moozhipurath, R. K. & Kulkarni, P. Monsoon, Vitamin-D, COVID-19: Implications for India. Postgraduate Medical Journal Blog (accessed 20 November 2020). https://blogs.bmj.com/pmj/2020/07/08/monsoon-vitamin-d-covid-19-implications-for-india/ (2020).

    5.
    D’Avolio, A. et al. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients 12, 1359 (2020).
    PubMed Central  Article  CAS  Google Scholar 

    6.
    Meltzer, D. O. et al. Association of vitamin D status and other clinical characteristics with COVID-19 test results. JAMA Netw. Open 3, e2019722 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    7.
    Merzon, E. et al. Low plasma 25 (OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 287, 3693–3702 (2020).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Kaufman, H. W., Niles, J. K., Kroll, M. H., Bi, C. & Holick, M. F. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS ONE 15, e0239252 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    9.
    Honardoost, M., Ghavideldarestani, M. & Khamseh, M. E. Role of vitamin D in pathogenesis and severity of COVID-19 infection. Arch. Physiol. Biochem. https://doi.org/10.1080/13813455.2020.1792505 (2020).
    Article  PubMed  PubMed Central  Google Scholar 

    10.
    Ilie, P. C., Stefanescu, S. & Smith, L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin. Exp. Res. 32, 1195–1198 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    11.
    Maghbooli, Z. et al. Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PLoS ONE 15, e0239799 (2020).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Castillo, M. E. et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 203, 105751 (2020).
    Article  CAS  Google Scholar 

    13.
    Benskin, L. L. A basic review of the preliminary evidence that COVID-19 risk and severity is increased in vitamin D deficiency. Front. Public Health 8, 513 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    Moozhipurath, R. K., Kraft, L. & Skiera, B. Evidence of protective role of ultraviolet-B (UVB) radiation in reducing COVID-19 deaths. Sci. Rep. 10, 17705 (2020).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    15.
    Engelsen, O., Brustad, M., Aksnes, L. & Lund, E. Daily duration of vitamin D synthesis in human skin with relation to latitude, total ozone, altitude, ground cover, aerosols and cloud thickness. Photochem. Photobiol. 81, 1287–1290 (2005).
    CAS  PubMed  Article  Google Scholar 

    16.
    Li, Y. et al. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: A systematic analysis. Lancet Glob. Health 7, e1031–e1045 (2019).
    PubMed  Article  Google Scholar 

    17.
    Li, Y., Wang, X. & Nair, H. Global seasonality of human seasonal coronaviruses: A clue for postpandemic circulating season of severe acute respiratory syndrome coronavirus 2?. J. Infect. Dis. 222, 1090–1097 (2020).
    CAS  PubMed  Article  Google Scholar 

    18.
    Gupta, E., Dar, L., Kapoor, G. & Broor, S. The changing epidemiology of dengue in Delhi, India. Virol. J. 3, 1–5 (2006).
    Article  Google Scholar 

    19.
    Laneri, K. et al. Forcing versus feedback: Epidemic malaria and monsoon rains in Northwest India. PLoS Comput. Biol. 6, e1000898 (2010).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    20.
    Shaman, J., Jeon, C. Y., Giovannucci, E. & Lipsitch, M. Shortcomings of vitamin D-based model simulations of seasonal influenza. PLoS ONE 6, e20743 (2011).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Ianevski, A. et al. Low temperature and low UV indexes correlated with peaks of influenza virus activity in Northern Europe during 2010–2018. Viruses 11, 207 (2019).
    CAS  PubMed Central  Article  Google Scholar 

    22.
    Yang, W. et al. Dynamics of influenza in tropical Africa: Temperature, humidity, and co-circulating (sub)types. Influenza Other Respir. Viruses 12, 446–456 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    23.
    Sajadi, M. M. et al. Temperature, humidity, and latitude analysis to estimate potential spread and seasonality of coronavirus disease 2019 (COVID-19). JAMA Netw. Open 3, e2011834 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    24.
    Dhara, V. R., Schramm, P. J. & Luber, G. Climate change & infectious diseases in India: Implications for health care providers. Indian J. Med. Res. 138, 847–852 (2013).
    PubMed  PubMed Central  Google Scholar 

    25.
    Nimitphong, H., Chanprasertyothin, S., Jongjaroenprasert, W. & Ongphiphadhanakul, B. The association between vitamin D status and circulating adiponectin independent of adiposity in subjects with abnormal glucose tolerance. Endocrine 36, 205–210 (2009).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    26.
    Sagripanti, J.-L. & Lytle, C. D. Inactivation of influenza virus by solar radiation. Photochem. Photobiol. 83, 1278–1282 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    27.
    Hart, P. H., Gorman, S. & Finlay-Jones, J. J. Modulation of the immune system by UV radiation: More than just the effects of vitamin D?. Nat. Rev. Immunol. 11, 584–596 (2011).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Bodiwala, D. et al. Prostate cancer risk and exposure to ultraviolet radiation: Further support for the protective effect of sunlight. Cancer Lett. 192, 145–149 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    29.
    Grant, W. B. An estimate of premature cancer mortality in the US due to inadequate doses of solar ultraviolet-B radiation. Cancer 94, 1867–1875 (2002).
    PubMed  Article  PubMed Central  Google Scholar 

    30.
    Grant, W. B. An ecologic study of the role of solar UV-B radiation in reducing the risk of cancer using cancer mortality data, dietary supply data, and latitude for European countries. In Biologic Effects of Light 2001 (ed. Holick, M. F.) 267–276 (Springer, Berlin, 2002).
    Google Scholar 

    31.
    Rostand, S. G. Ultraviolet light may contribute to geographic and racial blood pressure differences. Hypertension 30, 150–156 (1997).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    32.
    Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    33.
    Ritu, G. & Gupta, A. Vitamin D deficiency in India: Prevalence, causalities and interventions. Nutrients 6, 729–775 (2014).
    MathSciNet  Article  CAS  Google Scholar 

    34.
    Zittermann, A. Vitamin D in preventive medicine: Are we ignoring the evidence?. Br. J. Nutr. 89, 552–572 (2003).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    35.
    Tangpricha, V., Pearce, E. N., Chen, T. C. & Holick, M. F. Vitamin D insufficiency among free-living healthy young adults. Am. J. Med. 112, 659–662 (2002).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    36.
    Crowe, F. L. et al. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC–Oxford study. Public Health Nutr. 14, 340–346 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    37.
    Harinarayan, C. V., Holick, M. F., Prasad, U. V., Vani, P. S. & Himabindu, G. Vitamin D status and sun exposure in India. Dermato-endocrinology 5, 130–141 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Grant, W. B. et al. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12, 988 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    39.
    Charoenngam, N. & Holick, M. F. Immunologic effects of vitamin D on human health and disease. Nutrients 12, 2097 (2020).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    40.
    Cui, C. et al. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system. Redox Biol. 26, 101295 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    41.
    Xu, J. et al. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin–angiotensin system. Mol. Med. Rep. 16, 7432–7438 (2017).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Adams, J. S. et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol. 182, 4289–4295 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    43.
    Herr, C., Shaykhiev, R. & Bals, R. The role of cathelicidin and defensins in pulmonary inflammatory diseases. Expert Opin. Biol. Ther. 7, 1449–1461 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    44.
    Zhou, Y. et al. Effects of human mobility restrictions on the spread of COVID-19 in Shenzhen, China: A modelling study using mobile phone data. Lancet Digit. Health 2, e417–e424 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    45.
    Lytle, C. D. & Sagripanti, J.-L. Predicted inactivation of viruses of relevance to biodefense by solar radiation. J. Virol. 79, 14244–14252 (2005).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Deliconstantinos, G., Villiotou, V. & Stravrides, J. C. Release by ultraviolet B (u.v.B.) radiation of nitric oxide (NO) from human keratinocytes: A potential role for nitric oxide in erythema production. Br. J. Pharmacol. 114, 1257–1265 (1995).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    D’Orazio, J., Jarrett, S., Amaro-Ortiz, A. & Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 14, 12222–12248 (2013).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    48.
    Grant, W. B. The effect of solar UVB doses and vitamin D production, skin cancer action spectra, and smoking in explaining links between skin cancers and solid tumours. Eur. J. Cancer 44, 12–15 (2008).
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Estrogen induces shift in abundances of specific groups of the coral microbiome

    1.
    Ghiselli, G. & Jardim, W. F. Interferentes endócrinos no meio ambiente. Quím. Nova 30, 695–706 (2007).
    Article  Google Scholar 
    2.
    Vilela, C. L. S., Bassin, J. P. & Peixoto, R. S. Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. Environ. Poll. 235, 546–559 (2018).
    CAS  Article  Google Scholar 

    3.
    Muller, M. et al. Occurrence of estrogens in sewage sludge and their fate during plant-scale anaerobic digestion. Chemosphere 81, 65–71 (2010).
    ADS  CAS  PubMed  Article  Google Scholar 

    4.
    Mills, M. R. et al. Removal of ecotoxicity of 17α-ethinylestradiol using TAML/peroxide water treatment. Sci. Rep. 5, 1–10 (2015).
    Article  CAS  Google Scholar 

    5.
    Laurenson, J. P., Bloom, R. A., Page, S. & Sadrieh, N. Ethinylestradiol and other human pharmaceutical estrogens in the aquatic environment: A review of recent risk assessment data. AAPS J. 16, 299–310 (2014).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Luzio, A., Santos, D., Fontaínhas-Fernandes, A. A., Monteiro, S. M. & Coimbra, A. M. Effects of 17α-ethinylestradiol at different water temperatures on zebrafish sex differentiation and gonad development. Aquat. Toxicol. 174, 22–35 (2016).
    CAS  PubMed  Article  Google Scholar 

    7.
    Blewett, T., MacLatchy, D. L. & Wood, C. M. The effects of temperature and salinity on 17-α-ethynylestradiol uptake and its relationship to oxygen consumption in the model euryhaline teleost (Fundulus heteroclitus). Aquat. Toxicol. 127, 61–71 (2013).
    CAS  PubMed  Article  Google Scholar 

    8.
    Atkinson, S., Atkinson, M. J. & Tarrant, A. M. Estrogens from sewage in coastal marine environments. Environ. Health Persp. 111, 531–535 (2003).
    CAS  Article  Google Scholar 

    9.
    Segner, H. et al. Identification of endocrine-disrupting effects in aquatic vertebrates and invertebrates: Report from the European IDEA project. Ecotoxicol. Environ. Safe. 54, 302–314 (2003).
    CAS  Article  Google Scholar 

    10.
    Tyler, C. R., Jobling, S. & Sumpter, J. P. Endocrine disruption in wildlife: A critical review of the evidence. Crit. Rev. Toxicol. 28, 319–361 (1998).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    11.
    Johnson, A. C., Belfroid, A. & Di Corcia, A. Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Sci. Total Environ. 256, 163–173 (2000).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    12.
    Cadwell, D. J. et al. Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17α-ethinyl estradiol. Environ. Sci. Technol. 10, 272–283 (2008).
    Google Scholar 

    13.
    Ternes, T. A. et al. Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci. Total Environ. 225, 81–90 (1999).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    14.
    Kolpin, D. W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    15.
    Huang, Y., Wang, X. L., Zhang, J. W. & Wu, K. S. Impact of endocrine-disrupting chemicals on reproductive function in zebrafish (Danio rerio). Reprod. Domest. Anim. 50, 1–6 (2009).
    Article  CAS  Google Scholar 

    16.
    Länge, R. et al. Effects of the synthetic estrogen 17α-ethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ. Toxicol. Chem. 20, 1216–1227 (2001).
    PubMed  Article  PubMed Central  Google Scholar 

    17.
    Parrott, J. L. & Blunt, B. R. Life-cycle exposure of fathead minnows (Pimephales promelas) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes males. Environ. Toxicol. 20, 131–141 (2005).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    18.
    Bloom, M. S., Micu, R. & Neamtiu, I. Female infertility and “emerging” organic pollutants of concern. Curr. Epidemiol. Rep. 3, 39–50. https://doi.org/10.1007/s40471-016-0060-1 (2016).
    Article  Google Scholar 

    19.
    Nash, J. P. et al. Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ. Health Persp. 112, 1725–1733 (2004).
    CAS  Article  Google Scholar 

    20.
    Wu, C., Huang, X., Lin, J. & Liu, J. Occurrence and fate of selected endocrine-disrupting chemicals in water and sediment from an urban lake. Arch. Environ. Contam. Toxicol. 68, 225–236 (2014).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    21.
    Pennington, M. J. et al. Effects of contaminants of emerging concern on Megaselia scalaris (Lowe, Diptera: Phoridae) and its microbial community. Sci. Rep. 7, 1–12 (2017).
    CAS  Article  Google Scholar 

    22.
    Pennington, M. J., Prager, S. M., Walton, W. E. & Trumble, J. T. Culex quinquefasciatus larval microbiomes vary with instar and exposure to common wastewater contaminants. Sci. Rep. 6, 1–9 (2016).
    Article  CAS  Google Scholar 

    23.
    Pennington, M. J., Rivas, N. G., Prager, S. M., Walton, W. E. & Trumble, J. T. Pharmaceuticals and personal care products alter the holobiome and development of a medically important mosquito. Environ. Pollut. 203, 199–207 (2015).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    24.
    Fosch, S. E. et al. Contraception: Influence on vaginal microbiota and identification of vaginal lactobacilli using MALDI-TOF MS and 16S rDNA sequencing. Open Microbiol. J. 12, 218–229 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    25.
    Tarrant, A. M., Blomquist, C. H., Lima, P. H., Atkinson, M. J. & Atkinson, S. Metabolism of estrogens and androgens by scleractinian corals. Comp. Biochem. Phys. B. 136, 473–485 (2003).
    Article  CAS  Google Scholar 

    26.
    Tarrant, A. M., Atkinson, M. J. & Atkinson, S. Effects of steroidal estrogens on coral growth and reproduction. Mar. Ecol. Prog. Ser. 269, 121–129 (2004).
    ADS  CAS  Article  Google Scholar 

    27.
    Atkinson, S. & Atkinson, M. J. Detection of estradiol-17β during a mass coral spawn. Coral Reefs 11, 33–35 (1992).
    ADS  Article  Google Scholar 

    28.
    Atkinson, S. Uptake of estrone from the water column by a coral community. Mar. Biol. 139, 321–325 (2001).
    Article  Google Scholar 

    29.
    Rougée, L. R., Richmond, R. H. & Collier, A. C. Molecular reproductive characteristics of the reef coral Pocillopora damicornis. Comp. Biochem. Phys. A 189, 38–44 (2015).
    Article  CAS  Google Scholar 

    30.
    Blomquist, C. H., Lima, P. H., Tarrant, A. M., Atkinson, M. J. & Atkinson, S. 17β-Hydroxysteroid dehydrogenase (17β-HSD) in scleractinian corals and zooxanthellae. Comp. Biochem. Phys. B 143, 397–403 (2006).
    Article  CAS  Google Scholar 

    31.
    Tarrant, A. M., Atkinson, S. & Atkinson, M. J. Estrone and estradiol-17β concentration in tissue of the scleractinian coral, Montipora verrucosa. Comp. Biochem. Phys. A 122, 85–92 (1999).
    CAS  Article  Google Scholar 

    32.
    Twan, W. et al. Hormones and reproduction in scleractinian corals. Comp. Biochem. Phys. A 144, 247–253 (2006).
    Article  CAS  Google Scholar 

    33.
    Tarrant, A., Atkinson, M. & Atkinson, S. Uptake of estrone from the water column by a coral community. Mar. Biol. 139, 321–325 (2001).
    CAS  Article  Google Scholar 

    34.
    Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Rosenberg, E., Koren, O., Reshef, L. & Efrony, R. The role of microorganisms in coral health, disease and evolution. Nat. Rev. Microbiol. 5, 355–362 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    36.
    Rosenberg, E. Coral microbiology. Microb. Biotechnol. 2, 147 (2009).
    PubMed  PubMed Central  Article  Google Scholar 

    37.
    Peixoto, R. S., Rosado, P. M., Leite, D. C., Rosado, A. S. & Bourne, D. G. Beneficial microorganisms for corals (BMC): Proposed mechanisms for coral health and resilience. Front. Mar. Sci. 8, 1–16 (2017).
    CAS  Google Scholar 

    38.
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Patterns of coral heat tolerance. Nature Comm. 1, 1–8 (2017).
    Google Scholar 

    39.
    Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).
    Article  Google Scholar 

    40.
    Rosado, P. M. et al. Marine probiotics: Increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).
    CAS  PubMed  Article  Google Scholar 

    41.
    Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).
    ADS  CAS  PubMed  Article  Google Scholar 

    42.
    Wegley, L., Edwards, R., Rodriguez-Brito, B., Liu, H. & Rohwer, F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ. Microbiol. 9, 2707–2719 (2007).
    CAS  PubMed  Article  Google Scholar 

    43.
    Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).
    CAS  PubMed  Article  Google Scholar 

    44.
    Ritchie, K. B. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser. 322, 1–14 (2006).
    ADS  CAS  Article  Google Scholar 

    45.
    Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol. 70, 317–340 (2016).
    CAS  PubMed  Article  Google Scholar 

    46.
    Santos, H. F. et al. Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J. 8, 2272–2279 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    47.
    Santos, H. F. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 1–11 (2015).
    Google Scholar 

    48.
    Röthig, T., Yum, L. K., Kremb, S. G., Roik, A. & Voolstra, C. R. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment. Sci. Rep. 7, 44714 (2017).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    49.
    Meyer, J. L., Paul, V. J. & Teplitski, M. Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLoS ONE 9, e100316 (2014).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    50.
    Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 1–11 (2017).
    Article  Google Scholar 

    51.
    Grottoli, A. G. et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE 13, e0191156 (2018).
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    52.
    Webster, N. S. et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci. Rep. 6, 19324 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Ainsworth, T. D., Thurber, R. V. & Gates, R. D. The future of coral reefs: A microbial perspective. Trends Ecol. Evol. 25, 233–240 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    54.
    Gissi, F. et al. The effect of dissolved nickel and copper on the adult coral Acropora muricata and its microbiome. Environ. Pollut. 250, 792–806 (2019).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    55.
    Leite, D. C. et al. Coral bacterial-core abundance and network complexity as proxies for anthropogenic pollution. Front. Microbiol. 9, 833 (2018).
    PubMed  PubMed Central  Article  Google Scholar 

    56.
    Vega Thurber, R. et al. Metagenomic analysis of stressed coral holobionts. Environ. Microbiol. 11, 2148–2163 (2009).
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    57.
    Meron, D. et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma. ISME J. 5, 51–60 (2011).
    PubMed  Article  PubMed Central  Google Scholar 

    58.
    McDevitt-Irwin, J. M., Baum, J. K., Garren, M. & Vega Thurber, R. L. Responses of coral-associated bacterial communities to local and global stressors. Front. Mar. Sci. 4, 262 (2017).
    Article  Google Scholar 

    59.
    Al-Dahash, L. M. & Mahmoud, H. M. Harboring oil-degrading bacteria: A potential mechanism of adaptation and survival in corals inhabiting oil-contaminated reefs. Mar. Pollut. Bull. 72, 364–374 (2013).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    60.
    Wenger, A. S., Fabricius, K. E., Jones, G. P. & Brodie, J. E. Effects of sedimentation, eutrophication, and chemical pollution on coral reef fishes. In Ecology of Fishes on Coral Reefs (ed. Mora, C.) 145–153 (Cambridge University Press, Cambridge, 2015).
    Google Scholar 

    61.
    Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 1–12 (2016).
    Article  CAS  Google Scholar 

    62.
    Marangoni, L. F. et al. Copper effects on biomarkers associated with photosynthesis, oxidative status and calcification in the Brazilian coral Mussismilia harttii (Scleractinia, Mussidae). Mar. Environ. Res. 130, 248–257 (2017).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    63.
    Ferrigno, F. et al. Corals in high diversity reefs resist human impact. Ecol. Indic. 70, 106–113 (2016).
    Article  Google Scholar 

    64.
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 80, 929–933 (2003).
    ADS  Article  CAS  Google Scholar 

    65.
    Pastorok, R. & Bilyard, G. Effects of sewage pollution on coral-reef communities. Mar. Ecol. Prog. Ser. 21, 175–189 (1985).
    ADS  Article  Google Scholar 

    66.
    Tarrant, A. M. Hormonal signaling in cnidarians: Do we understand the pathways well enough to know whether they are being disrupted?. Ecotoxicology 16, 5–13 (2007).
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    67.
    Peters, E. C., Gassman, N. J., Firman, J. C., Richmond, R. H. & Power, E. A. Ecotoxicology of tropical marine ecosystems. Environ. Toxicol. Chem. 16, 12–40 (1997).
    CAS  Article  Google Scholar 

    68.
    Holert, J. et al. Metagenomes reveal global distribution of bacterial steroid catabolism in natural, engineered, and host environments. MBio 9, e02345-e2417 (2018).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    69.
    Winter, A. P. M., Chaloub, R. M. & Duarte, G. A. S. Photosynthetic responses of corals Mussismilia harttii (Verrill, 1867) from turbid waters to changes in temperature and presence/absence of light. Braz. J. Oceanogr. 64, 203–216 (2016).
    Article  Google Scholar 

    70.
    Fonseca, J. S., Marangoni, L. F. B., Marques, J. A. & Bianchini, A. Effects of increasing temperature alone and combined with copper exposure on biochemical and physiological parameters in the zooxanthellate scleractinian coral Mussismilia harttii. Aquat. Toxicol. 190, 121–132 (2017).
    CAS  PubMed  Article  Google Scholar 

    71.
    Ralph, P. J., Schreiber, U., Gademann, R., Kühl, M. & Larkum, A. W. D. Coral photobiology studied with a new imaging pulse amplitude modulated fluorometer. J. Phycol. 41, 335–342 (2005).
    Article  Google Scholar 

    72.
    Sato, Y., Bourne, D. G. & Willis, B. L. Effects of temperature and light on the progression of black band disease on the reef coral, Montiporahispida. Coral Reefs 30, 753–761 (2011).
    ADS  Article  Google Scholar 

    73.
    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160–164 (2013).
    ADS  CAS  Article  Google Scholar 

    74.
    Fernando, S. C. et al. Microbiota of the major south atlantic reef building. Microb. Ecol. 69, 267–280 (2015).
    PubMed  Article  Google Scholar 

    75.
    De Castro, A. P., Dias, S. A. & Reis, A. M. M. Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from eastern Brazil. Microb. Ecol. 59, 658–667 (2010).
    PubMed  Article  Google Scholar 

    76.
    Santos, H. F. et al. Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: Bacterial proxies for oil pollution. PLoS ONE 6, e14693 (2011).
    Article  CAS  Google Scholar 

    77.
    Santos, H. F., Cury, J. C., Carmo, F. L., Rosado, A. S. & Peixoto, R. S. 18S rDNA sequences from microeukaryotes reveal oil indicators in mangrove sediment. PLoS ONE 5, e12437 (2010).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    78.
    Oleynik, G. N., Yurishinets, V. I. & Starosila, Y. V. Bacterioplankton and bacteriobenthos as biological indicators of the aquatic ecosystems’ state (a review). Hydrobiol. J. 47, 37–48 (2011).
    Article  Google Scholar 

    79.
    Jain, A., Singh, B. N., Singh, S. P., Singh, H. B. & Singh, S. Exploring biodiversity as bioindicators for water pollution. Natl. Conf. Biodivers. Dev. Poverty Alleviation, 50–56 (2010).

    80.
    Bloem, J. & Breure, A. M. Microbial indicators. In Bioindicators and Biomonitors (eds Markert, B. A. et al.) 257–282 (Elsevier, Amsterdam, 2003).
    Google Scholar 

    81.
    Parmar, T. K., Rawtani, D. & Agrawal, Y. K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 9, 110–118 (2016).
    CAS  Article  Google Scholar 

    82.
    Wilkins, L. G. E. et al. Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol. 17, e3000533 (2019).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    83.
    Kurisu, F., Ogura, M., Saitoh, S., Yamazoe, A. & Yagi, O. Degradation of natural estrogen and identification of the metabolites produced by soil isolates of Rhodococcus sp. and Sphingomonas sp.. J. Biosci. Bioeng. 109, 576–582 (2010).
    CAS  PubMed  Article  Google Scholar 

    84.
    Wang, Y. et al. Degradation of 17 β-estradiol and products by a mixed culture of Rhodococcus equi DSSKP-R-001 and Comamonas testosteroni QYY20150409. Biotechnol. Biotechnol. Equip. 33, 268–277 (2019).
    CAS  Article  Google Scholar 

    85.
    Yoshimoto, T. et al. Isolates from activated sludge in wastewater treatment plants. Appl. Environ. Microbiol. 70, 5283–5289 (2004).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    86.
    Zhao, H. et al. Genome analysis of Rhodococcus sp. DSSKP-R-001: A highly effective β-estradiol-degrading bacterium. Int. J. Genomics 2018, 3505428 (2018).
    PubMed  PubMed Central  Google Scholar 

    87.
    Edet, U. O. & Antai, S. P. Correlation and distribution of xenobiotics genes and metabolic activities with level of total petroleum hydrocarbon in soil, sediment and estuary water in the Niger Delta Region of Nigeria. Asian J. Biotechnol. Genet. Eng. 1(1), 1–11 (2018).
    Google Scholar 

    88.
    Parida, S. & Sharma, D. The microbiome-estrogen connection and breast cancer risk. Cells 8, 1642 (2019).
    CAS  PubMed Central  Article  PubMed  Google Scholar 

    89.
    Schreiber, U. Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: An overview. In Chlorophyll a Fluorescence: A Signature of Photosynthesis (eds Papageorgiou, G. C. & Govindjee, C.) 279–319 (Springer, Berlin, 2004).
    Google Scholar 

    90.
    Siebeck, U. E., Marshall, N. J., Klüter, A. & Hoegh-Guldberg, O. Monitoring coral bleaching using a colour reference card. Coral Reefs 25, 453–460 (2006).
    ADS  Article  Google Scholar 

    91.
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 

    92.
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    93.
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    94.
    McCune, B. & Mefford, M. J. PC-ORD v. 6.0. MjM Software, Gleneden Beach (2010). More

  • in

    Hydro-climatic changes of wetlandscapes across the world

    1.
    Mitsch, W. J. & Gosselink, J. G. Wetlands [Elektronisk Resurs] (Wiley, Hoboken, 2015).
    Google Scholar 
    2.
    Sieben, E. J. J., Khubeka, S. P., Sithole, S., Job, N. M. & Kotze, D. C. The classification of wetlands: Integration of top-down and bottom-up approaches and their significance for ecosystem service determination. Wetl. Ecol. Manage. 26, 441–458 (2018).
    Article  Google Scholar 

    3.
    Seifollahi-Aghmiuni, S., Nockrach, M. & Kalantari, Z. The potential of wetlands in achieving the sustainable development goals of the 2030 Agenda. Water 11, 609 (2019).
    Article  Google Scholar 

    4.
    Jaramillo, F. et al. Priorities and interactions of sustainable development goals (SDGs) with focus on wetlands. Water 11, 619 (2019).
    Article  Google Scholar 

    5.
    Thorslund, J. et al. Solute evidence for hydrological connectivity of geographically isolated wetlands. Land Degrad. Dev. 29, 3954–3962 (2018).
    Article  Google Scholar 

    6.
    Quin, A., Jaramillo, F. & Destouni, G. Dissecting the ecosystem service of large-scale pollutant retention: The role of wetlands and other landscape features. Ambio 44, 127–137 (2015).
    Article  Google Scholar 

    7.
    Thorslund, J. et al. Wetlands as large-scale nature-based solutions: Status and challenges for research, engineering and management. Ecol. Eng. 108, 489–497 (2017).
    Article  Google Scholar 

    8.
    Åhlén, I. et al. Wetlandscape size thresholds for ecosystem service delivery: Evidence from the Norrström drainage basin, Sweden. Sci. Total Environ. 704, 135452 (2020).
    ADS  Article  Google Scholar 

    9.
    Moomaw, W. R. et al. Wetlands in a changing climate: Science, policy and management. Wetlands 38, 183–205 (2018).
    Article  Google Scholar 

    10.
    Erwin, K. L. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetl. Ecol. Manage. 17, 71 (2008).
    Article  Google Scholar 

    11.
    Jaramillo, F., Prieto, C., Lyon, S. W. & Destouni, G. Multimethod assessment of evapotranspiration shifts due to non-irrigated agricultural development in Sweden. J. Hydrol. 484, 55–62 (2013).
    ADS  Article  Google Scholar 

    12.
    Bring, A. et al. Implications of freshwater flux data from the CMIP5 multimodel output across a set of Northern Hemisphere drainage basins: Implications of freshwater flux data from the CMIP5 multimodel output across. Earths Future 3, 206–217 (2015).
    ADS  Article  Google Scholar 

    13.
    Jarsjö, J., Asokan, S. M., Prieto, C., Bring, A. & Destouni, G. Hydrological responses to climate change conditioned by historic alterations of land-use and water-use. Hydrol. Earth Syst. Sci. 16, 1335–1347 (2012).
    ADS  Article  Google Scholar 

    14.
    Moor, H., Hylander, K. & Norberg, J. Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. Ambio 44, 113–126 (2015).
    Article  Google Scholar 

    15.
    Jaramillo, F. et al. Effects of hydroclimatic change and rehabilitation activities on salinity and mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands 38, 755–767 (2018).
    Article  Google Scholar 

    16.
    Jarsjö, J. et al. Projecting impacts of climate change on metal mobilization at contaminated sites: Controls by the groundwater level. Sci. Total Environ. 712, 135560 (2020).
    ADS  Article  Google Scholar 

    17.
    Ghajarnia, N. et al. Wetlandscape change information database (WetCID). Earth Syst. Sci. Data 12(2), 1083–1083. https://doi.org/10.1594/PANGAEA.907398 (2019).
    ADS  Article  Google Scholar 

    18.
    Karlsson, J. M., Jaramillo, F. & Destouni, G. Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J. Hydrol. 529, 134–145 (2015).
    ADS  Article  Google Scholar 

    19.
    Hofstede, R. G. M. Effects of livestock farming and recommendations for management and conservation of páramo grasslands (Colombia). Land Degrad. Dev. 6, 133–147 (1995).
    Article  Google Scholar 

    20.
    Agudelo, C. & Fernanda, M. Ecohydrology of Paramos in Colombia: Vulnerability to Climate Change and Land Use (Universidad Nacional de Colombia, Medellín, 2019).
    Google Scholar 

    21.
    Fallah, M. & Zamani-Ahmadmahmoodi, R. Assessment of water quality in Iran’s Anzali Wetland, using qualitative indices from 1985, 2007, and 2014. Wetl. Ecol. Manage. 25, 597–605 (2017).
    CAS  Article  Google Scholar 

    22.
    Khazaei, B. et al. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J. Hydrol. 569, 203–217 (2019).
    ADS  Article  Google Scholar 

    23.
    Shibuo, Y., Jarsjö, J. & Destouni, G. Hydrological responses to climate change and irrigation in the Aral Sea drainage basin. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031465 (2007).
    Article  Google Scholar 

    24.
    Jarsjö, J., Törnqvist, R. & Su, Y. Climate-driven change of nitrogen retention–attenuation near irrigated fields: Multi-model projections for Central Asia. Environ. Earth Sci. 76, 117 (2017).
    Article  Google Scholar 

    25.
    Marjani, A. & Jamali, M. Role of exchange flow in salt water balance of Urmia Lake. Dyn. Atmos. Oceans 65, 1–16 (2014).
    ADS  Article  Google Scholar 

    26.
    Törnqvist, R. et al. Evolution of the hydro-climate system in the Lake Baikal basin. J. Hydrol. 519, 1953–1962 (2014).
    ADS  Article  Google Scholar 

    27.
    Pietroń, J. et al. Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions. Hydrol. Process. 32, 278–292 (2018).
    ADS  Article  Google Scholar 

    28.
    Foufoula-Georgiou, E., Takbiri, Z., Czuba, J. A. & Schwenk, J. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions. Water Resour. Res. 51, 6649–6671 (2015).
    ADS  Article  Google Scholar 

    29.
    Meter, K. J. V. & Basu, N. B. Signatures of human impact: Size distributions and spatial organization of wetlands in the Prairie Pothole landscape. Ecol. Appl. 25, 451–465 (2015).
    Article  Google Scholar 

    30.
    McCartney, M., Morardet, S., Rebelo, L.-M., Finlayson, C. M. & Masiyandima, M. A study of wetland hydrology and ecosystem service provision: GaMampa wetland, South Africa. Hydrol. Sci. J. 56, 1452–1466 (2011).
    Article  Google Scholar 

    31.
    Wolf, K. L., Noe, G. B. & Ahn, C. Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands. J. Environ. Qual. 42, 1245–1255 (2013).
    CAS  Article  Google Scholar 

    32.
    Kasimov, N., Karthe, D. & Chalov, S. Environmental change in the Selenga River—Lake Baikal Basin. Reg. Environ. Change 17, 1945–1949 (2017).
    Article  Google Scholar 

    33.
    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).
    Article  Google Scholar 

    34.
    Ghajarnia, N. et al. Data for wetlandscapes and their changes around the world. Earth Syst. Sci. Data 12, 1083–1100 (2020).
    ADS  Article  Google Scholar 

    35.
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Article  Google Scholar 

    36.
    Budyko, M. I. & Miller, D. H. Climate and Life (Academic Press, New York, 1974).
    Google Scholar 

    37.
    Roderick, M. L. & Farquhar, G. D. A simple framework for relating variations in runoff to variations in climatic conditions and catchment properties. Water Resour. Res. https://doi.org/10.1029/2010WR009826 (2011).
    Article  Google Scholar 

    38.
    Yang, H., Yang, D., Lei, Z. & Sun, F. New analytical derivation of the mean annual water-energy balance equation. Water Resour. Res. https://doi.org/10.1029/2007WR006135 (2008).
    Article  Google Scholar 

    39.
    Zhang, D., Cong, Z., Ni, G., Yang, D. & Hu, S. Effects of snow ratio on annual runoff within the Budyko framework. Hydrol. Earth Syst. Sci. 19, 1977–1992 (2015).
    ADS  Article  Google Scholar 

    40.
    Wen, X., Tang, G., Wang, S. & Huang, J. Comparison of global mean temperature series. Adv. Clim. Change Res. 2, 187–192 (2011).
    Article  Google Scholar  More

  • in

    Impact of root-associated strains of three Paraburkholderia species on primary and secondary metabolism of Brassica oleracea

    Paraburkholderia species promote Broccoli growth in a cultivar-dependent manner
    Root tip inoculation of the two Broccoli cultivars with strains of three different Paraburkholderia species led to changes in leaf color (deep green leaves), shoot biomass, root biomass and root architecture (Fig. 1a). Percent change in biomass was used as a measure to assess the growth-promoting effects of the Paraburkholderia species in the two Broccoli cultivars. Two-way analysis of variance (ANOVA) was conducted to assess the influence of the two independent variables (strains of Paraburkholderia species and Broccoli cultivars) on both shoot and root biomass. The Paraburkholderia species included three levels (Pbg, Pbh, Pbt) and the Broccoli cultivars consisted of two levels (Coronado, Malibu). For shoots, all interactions, except Pbt-Malibu, resulted in significant increases in biomass relative to the non-treated control plants, while for roots all three Paraburkholderia species significantly increased the biomass in both Broccoli cultivars (Fig. 1b). In general, the relative impact of Paraburkholderia species was up to 3 times higher for root biomass than for shoot biomass (Fig. 1b). Two-way ANOVA showed highly significant interactions between the strains of Paraburkholderia species and Broccoli cultivars regarding the percent changes in shoot and root biomass (Supplementary Table S1). Overall, for cultivar Coronado the percent change in shoot biomass was about 40% compared to the control, and not significantly different between the different strains of Paraburkholderia species, whereas in cultivar Malibu the percent change in shoot biomass was significantly higher for Pbg (~ 70%) and Pbh (~ 90%) as compared to Pbt. Furthermore, inoculation with Pbh led to a significantly higher increase in shoot biomass in cultivar Malibu than in Coronado. Regarding the percent change in root biomass, only inoculation of Pbt showed significant differences between the two Broccoli cultivars. As indicated above, the shoot biomass of cultivar Malibu inoculated with Pbt was not significantly different from the control plants (Fig. 1b). Over a period of 11 days, both Pbg and Pbh-treated Broccoli cultivars showed significantly higher shoot and root biomass from 7 days post inoculation (dpi) onwards, while Pbt-treated plants showed higher shoot biomass in Coronado from 9 dpi onwards (Fig. 1c).
    Figure 1

    Biomass and phenotypic changes in Broccoli cultivars in response to root tip inoculation with strains of three Paraburkholderia species. (a) Pictures of MS agar plate with two Broccoli cultivars (Coronado and Malibu) at 11 days post inoculation with strains of three Paraburkholderia species (Pbg: Paraburkholderia graminis PHS1, Pbh: P. hospita mHSR1, and Pbt: P. terricola mHS1). (b) Percent changes in shoot and root biomass (mean ± standard error, n = 4 (shoot) and n = 6 (root)) of two Broccoli cultivars inoculated with the strains of the Paraburkholderia species. Treatments sharing the same letters are not significantly different (Two-way ANOVA, Tukey’s HSD post hoc test, P  More