1.
Musso, D., Rodriguez-Morales, A. J., Levi, J. E., Cao-Lormeau, V.-M. & Gubler, D. J. Unexpected outbreaks of arbovirus infections: lessons learned from the Pacific and tropical America. Lancet Infect. Dis. 18, e355–e361 (2018).
PubMed Article Google Scholar
2.
Mavian, C. et al. Islands as hotspots for emerging mosquito-borne viruses: a one-health perspective. Viruses 11, 11 (2018).
3.
Cao-Lormeau, V.-M. Tropical islands as new hubs for emerging arboviruses. Emerg. Infect. Dis. 22, 913–915 (2016).
PubMed PubMed Central Article Google Scholar
4.
Cassadou, S. et al. Emergence of chikungunya fever on the French side of Saint Martin island, October to December 2013. Euro Surveill. 19, 20752 (2014).
5.
Dorléans, F. et al. Outbreak of Chikungunya in the French Caribbean Islands of Martinique and Guadeloupe: findings from a Hospital-Based Surveillance System (2013–2015). Am. J. Trop. Med. Hyg. 98, 1819–1825 (2018).
6.
Halstead, S. B. Reappearance of chikungunya, formerly called dengue, in the Americas. Emerg. Infect. Dis. 21, 557–561 (2015).
CAS PubMed PubMed Central Article Google Scholar
7.
Faria, N. R. et al. Zika virus in the Americas: early epidemiological and genetic findings. Science 352, 345–349 (2016).
ADS CAS PubMed PubMed Central Article Google Scholar
8.
Grubaugh, N. D., Faria, N. R., Andersen, K. G. & Pybus, O. G. Genomic insights into Zika virus emergence and spread. Cell 172, 1160–1162 (2018).
CAS PubMed Article Google Scholar
9.
Metsky, H. C. et al. Zika virus evolution and spread in the Americas. Nature 546, 411–415 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
10.
Hotez, P. J. & Murray, K. O. Dengue, West Nile virus, chikungunya, Zika-and now Mayaro? PLoS Negl. Trop. Dis. 11, e0005462 (2017).
PubMed PubMed Central Article Google Scholar
11.
Lorenz, C., Freitas Ribeiro, A. & Chiaravalloti-Neto, F. Mayaro virus distribution in South America. Acta Trop. 198, 105093 (2019).
PubMed Article Google Scholar
12.
Ganjian, N. & Riviere-Cinnamond, A. Mayaro virus in Latin America and the Caribbean. Rev. Panam. Salud Publica 44, e14 (2020).
PubMed PubMed Central Article Google Scholar
13.
Weaver, S. C. & Reisen, W. K. Present and future arboviral threats. Antivir. Res. 85, 328–345 (2010).
CAS PubMed Article Google Scholar
14.
Long, K. C. et al. Experimental transmission of Mayaro virus by Aedes aegypti. Am. J. Trop. Med. Hyg. 85, 750–757 (2011).
PubMed PubMed Central Article Google Scholar
15.
Suspected dengue cases by epidemiological week for countries and territories of the America. https://www.paho.org/data/index.php/en/mnu-topics/indicadores-dengue-en/dengue-nacional-en/252-dengue-pais-ano-en.html?start=2.
16.
Five-fold increase in dengue cases in the Americas over the past decade. https://www.paho.org/hq/index.php?option=com_content&view=article&id=9657:2014-los-casos-dengue-americas- (2014).
17.
Obolski, U. et al. MVSE: an R‐package that estimates a climate‐driven mosquito‐borne viral suitability index. Methods Ecol. Evol. 10, 1357–1370 (2019).
PubMed PubMed Central Article Google Scholar
18.
Kraemer, M. U. G. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, e08347 (2015).
PubMed PubMed Central Article Google Scholar
19.
Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).
CAS PubMed PubMed Central Article Google Scholar
20.
Hamlet, A. et al. The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Negl. Trop. Dis. 12, e0006284 (2018).
PubMed PubMed Central Article Google Scholar
21.
Do, T. T. T., Martens, P., Luu, N. H., Wright, P. & Choisy, M. Climatic-driven seasonality of emerging dengue fever in Hanoi, Vietnam. BMC Public Health 14, 1078 (2014).
PubMed PubMed Central Article Google Scholar
22.
Perez-Guzman, P. N. et al. Measuring mosquito-borne viral suitability in Myanmar and implications for Local Zika virus transmission. PLoS Curr. 10 (2018).
23.
Rodrigues Faria, N. et al. Epidemiology of Chikungunya Virus in Bahia, Brazil, 2014-2015. PLoS Curr. 8 (2016).
24.
Lourenço, J. et al. Epidemiological and ecological determinants of Zika virus transmission in an urban setting. eLife 6, e29820 (2017).
25.
Dengue serotypes by year for countries and territories of the Americas. https://www.paho.org/data/index.php/es/temas/indicadores-dengue/dengue-nacional/549-dengue-serotypes-es.html.
26.
Bowman, L. R., Rocklöv, J., Kroeger, A., Olliaro, P. & Skewes, R. A comparison of Zika and dengue outbreaks using national surveillance data in the Dominican Republic. PLoS Negl. Trop. Dis. 12, e0006876 (2018).
PubMed PubMed Central Article Google Scholar
27.
Lindsey, N. P., Staples, J. E. & Fischer, M. Chikungunya Virus disease among travelers-United States 2014–2016. Am. J. Trop. Med. Hyg. 98, 192–197 (2018).
PubMed Article Google Scholar
28.
Zingman, M. A., Paulino, A. T. & Payano, M. P. Clinical manifestations of chikungunya among university professors and staff in Santo Domingo, the Dominican Republic. Rev. Panam. Salud Publica 41, e64 (2017).
PubMed PubMed Central Article Google Scholar
29.
Rosario, V. et al. Chikungunya infection in the general population and in patients with rheumatoid arthritis on biological therapy. Clin. Rheumatol. 34, 1285–1287 (2015).
CAS PubMed Article Google Scholar
30.
He, A., Brasil, P., Siqueira, A. M., Calvet, G. A. & Kwatra, S. G. The emerging Zika virus threat: a guide for dermatologists. Am. J. Clin. Dermatol. 18, 231–236 (2017).
PubMed Article Google Scholar
31.
Martinez, J. D., Garza, J. A. Cla & Cuellar-Barboza, A. Going viral 2019: Zika, Chikungunya, and Dengue. Dermatol. Clin. 37, 95–105 (2019).
CAS PubMed Article Google Scholar
32.
Duffy, M. R. et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N. Engl. J. Med. 360, 2536–2543 (2009).
CAS PubMed Article Google Scholar
33.
Pineda, C., Muñoz-Louis, R., Caballero-Uribe, C. V. & Viasus, D. Chikungunya in the region of the Americas. A challenge for rheumatologists and health care systems. Clin. Rheumatol. 35, 2381–2385 (2016).
PubMed Article Google Scholar
34.
Langsjoen, R. M. et al. Molecular virologic and clinical characteristics of a chikungunya fever outbreak in La Romana, Dominican Republic, 2014. PLoS Negl. Trop. Dis. 10, e0005189 (2016).
PubMed PubMed Central Article CAS Google Scholar
35.
Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 4, 10–19 (2019).
CAS PubMed Article Google Scholar
36.
Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).
PubMed PubMed Central Article Google Scholar
37.
Liu-Helmersson, J., Stenlund, H., Wilder-Smith, A. & Rocklöv, J. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS ONE 9, e89783 (2014).
ADS PubMed PubMed Central Article CAS Google Scholar
38.
Winokur, O. C., Main, B. J., Nicholson, J. & Barker, C. M. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl. Trop. Dis. 14, e0008047 (2020).
PubMed PubMed Central Article CAS Google Scholar
39.
Chan, M. & Johansson, M. A. The incubation periods of Dengue viruses. PLoS ONE 7, e50972 (2012).
ADS CAS PubMed PubMed Central Article Google Scholar
40.
Mordecai, E. A. et al. Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. 11, e0005568 (2017).
PubMed PubMed Central Article Google Scholar
41.
Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).
ADS CAS PubMed PubMed Central Article Google Scholar
42.
Cauchemez, S. et al. Local and regional spread of chikungunya fever in the Americas. Eur. Surveill. 19, 20854 (2014).
CAS Article Google Scholar
43.
Nishiura, H., Kinoshita, R., Mizumoto, K., Yasuda, Y. & Nah, K. Transmission potential of Zika virus infection in the South Pacific. Int. J. Infect. Dis. 45, 95–97 (2016).
PubMed Article Google Scholar
44.
Liu, Y. et al. Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones. Environ. Res. 182, 109114 (2020).
CAS PubMed Article Google Scholar
45.
Rodriguez-Barraquer, I., Salje, H. & Cummings, D. A. Opportunities for improved surveillance and control of dengue from age-specific case data. Elife 8, e45474 (2019).
46.
Plan de preparación y respuesta frente a brotes de Fiebre Chikungunya. Resolución Ministerial N° 427 – 2014/MINSA Lima, Peu (2014).
47.
Low, G. K.-K., Ogston, S. A., Yong, M.-H., Gan, S.-C. & Chee, H.-Y. Global dengue death before and after the new World Health Organization 2009 case classification: a systematic review and meta-regression analysis. Acta Trop. 182, 237–245 (2018).
PubMed Article Google Scholar
48.
Freitas, A. R. R., Alarcón-Elbal, P. M., Paulino-Ramírez, R. & Donalisio, M. R. Excess mortality profile during the Asian genotype chikungunya epidemic in the Dominican Republic. 2014. Trans. R. Soc. Trop. Med. Hyg. 112, 443–449 (2018).
PubMed Article Google Scholar
49.
Imai, N., Dorigatti, I., Cauchemez, S. & Ferguson, N. M. Estimating dengue transmission intensity from sero-prevalence surveys in multiple countries. PLoS Negl. Trop. Dis. 9, e0003719 (2015).
PubMed PubMed Central Article CAS Google Scholar
50.
Grubaugh, N. D. et al. Xenosurveillance: a novel mosquito-based approach for examining the human-pathogen landscape. PLoS Negl. Trop. Dis. 9, e0003628 (2015).
PubMed PubMed Central Article CAS Google Scholar
51.
Fauver, J. R. et al. The use of xenosurveillance to detect human bacteria, parasites, and viruses in mosquito bloodmeals. Am. J. Trop. Med. Hyg. 97, 324–329 (2017).
CAS PubMed PubMed Central Article Google Scholar
52.
Fauver, J. R. et al. Xenosurveillance reflects traditional sampling techniques for the identification of human pathogens: a comparative study in West Africa. PLoS Negl. Trop. Dis. 12, e0006348 (2018).
PubMed PubMed Central Article CAS Google Scholar
53.
Grubaugh, N. D. et al. Travel surveillance and genomics uncover a hidden zika outbreak during the waning epidemic. Cell 178, 1057–1071.e11 (2019).
CAS PubMed PubMed Central Article Google Scholar
54.
Vogels, C. B. F. et al. Arbovirus coinfection and co-transmission: a neglected public health concern? PLoS Biol. 17, e3000130 (2019).
PubMed PubMed Central Article CAS Google Scholar
55.
Bisanzio, D. et al. Spatio-temporal coherence of dengue, chikungunya and Zika outbreaks in Merida, Mexico. PLoS Negl. Trop. Dis. 12, e0006298 (2018).
PubMed PubMed Central Article Google Scholar
56.
Freitas, L. P., Cruz, O. G., Lowe, R. & Sá Carvalho, M. Space–time dynamics of a triple epidemic: dengue, chikungunya and Zika clusters in the city of Rio de Janeiro. Proc. R. Soc. B: Biol. Sci. 286, 20191867 (2019).
Article Google Scholar
57.
Shioda, K. et al. Identifying signatures of the impact of rotavirus vaccines on hospitalizations using sentinel surveillance data from Latin American countries. Vaccine 38, 323–329 (2020).
PubMed Article Google Scholar
58.
Blohm, G. et al. Mayaro as a Caribbean traveler: Evidence for multiple introductions and transmission of the virus into Haiti. Int. J. Infect. Dis. 87, 151–153 (2019).
CAS PubMed Article Google Scholar
59.
Lednicky, J. et al. Mayaro Virus in Child with Acute Febrile Illness, Haiti, 2015. Emerg. Infect. Dis. 22, 2000–2002 (2016).
PubMed PubMed Central Article Google Scholar
60.
Weppelmann, T. A. et al. A tale of two flaviviruses: a seroepidemiological study of dengue virus and west nile virus transmission in the ouest and sud-est departments of Haiti. Am. J. Trop. Med. Hyg. 96, 135–140 (2017).
PubMed PubMed Central Article Google Scholar
61.
Wiggins, K., Eastmond, B. & Alto, B. W. Transmission potential of Mayaro virus in Florida Aedes aegypti and Aedes albopictus mosquitoes. Med. Vet. Entomol. 32, 436–442 (2018).
CAS PubMed Article PubMed Central Google Scholar
62.
Pereira, T. N., Carvalho, F. D., De Mendonça, S. F., Rocha, M. N. & Moreira, L. A. Vector competence of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquitoes for Mayaro virus. PLoS Negl. Trop. Dis. 14, e0007518 (2020).
PubMed PubMed Central Article Google Scholar
63.
Kantor, A. M., Lin, J., Wang, A., Thompson, D. C. & Franz, A. W. E. Infection pattern of Mayaro Virus in Aedes aegypti (Diptera: Culicidae) and transmission potential of the virus in mixed infections with Chikungunya virus. J. Med. Entomol. 56, 832–843 (2019).
CAS PubMed PubMed Central Article Google Scholar
64.
Komar, O. et al. West Nile virus survey of birds and mosquitoes in the Dominican Republic. Vector-Borne Zoonotic Dis. 5, 120–126 (2005).
PubMed Article PubMed Central Google Scholar
65.
Requena-Méndez, A. et al. Cases of chikungunya virus infection in travellers returning to Spain from Haiti or Dominican Republic, April-June 2014. Eur. Surveill. 19, 20853 (2014).
Article Google Scholar
66.
Millman, A. J. et al. Chikungunya and Dengue virus infections among united states community service volunteers returning from the Dominican Republic, 2014. Am. J. Trop. Med. Hyg. 94, 1336–1341 (2016).
CAS PubMed PubMed Central Article Google Scholar
67.
Duijster, J. W. et al. Zika virus infection in 18 travellers returning from Surinam and the Dominican Republic, The Netherlands, November 2015–March 2016. Infection 44, 797–802 (2016).
PubMed PubMed Central Article Google Scholar
68.
Barzon, L. et al. Isolation of infectious Zika virus from saliva and prolonged viral RNA shedding in a traveller returning from the Dominican Republic to Italy, January 2016. Eur. Surveill. 21, 30159 (2016).
Google Scholar
69.
Goncé, A. et al. Spontaneous abortion associated with Zika virus infection and persistent viremia. Emerg. Infect. Dis. 24, 933–935 (2018).
PubMed PubMed Central Article Google Scholar
70.
Díaz-Menéndez, M. et al. Initial experience with imported Zika virus infection in Spain. Enfermedades Infecciosas y. Microbiol.ía Cl.ínica 36, 4–8 (2018).
Google Scholar
71.
Perez, F. et al. The decline of dengue in the Americas in 2017: discussion of multiple hypotheses. Trop. Med. Int. Health 24, 442–453 (2019).
PubMed PubMed Central Article Google Scholar
72.
Ribeiro, G. S. et al. Does immunity after Zika virus infection cross-protect against dengue?. Lancet Glob. Health 6, e140–e141 (2018).
PubMed Article Google Scholar
73.
Ribeiro, G. S. et al. Influence of herd immunity in the cyclical nature of arboviruses. Curr. Opin. Virol. 40, 1–10 (2020).
CAS PubMed Article Google Scholar
74.
Gordon, A. et al. Prior dengue virus infection and risk of Zika: a pediatric cohort in Nicaragua. PLoS Med. 16, e1002726 (2019).
PubMed PubMed Central Article CAS Google Scholar
75.
Rodriguez-Barraquer, I. et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 363, 607–610 (2019).
ADS CAS PubMed Article Google Scholar
76.
Tsang, T. K. et al. Effects of infection history on dengue virus infection and pathogenicity. Nat. Commun. 10, 1246 (2019).
ADS PubMed PubMed Central Article CAS Google Scholar
77.
Katzelnick, L. C., Montoya, M., Gresh, L., Balmaseda, A. & Harris, E. Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc. Natl Acad. Sci. USA 113, 728–733 (2016).
ADS CAS PubMed Article Google Scholar
78.
República Dominicana Chikungunya. https://www.paho.org/dor/images/stories/archivos/chikungunya/boletin_chikv_no-13_2014_8_20.pdf?ua=1 (2014).
79.
Verdonschot, P. F. M. & Besse-Lototskaya, A. A. Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 45, 69–79 (2014).
Article Google Scholar
80.
Vazeille, M. et al. Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS ONE 2, e1168 (2007).
ADS PubMed PubMed Central Article CAS Google Scholar
81.
Lamballerie, Xde et al. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol. J. 5, 33 (2008).
PubMed PubMed Central Article CAS Google Scholar
82.
González, M. A. et al. Micro-environmental features associated to container-dwelling mosquitoes (Diptera: Culicidae) in an urban cemetery of the Dominican Republic. Rev. Biol. Trop. 67, 132–145 (2019).
83.
González, M. A. et al. A survey of tire-breeding mosquitoes (Diptera: Culicidae) in the Dominican Republic: considerations about a pressing issue. Biomédica 40, 507–515 (2020).
84.
IX Censo Nacional De Población Y Vivienda. vol. 1 (2012).
85.
PLISA Health Information Platform for the Americas. https://www.paho.org/data/index.php/en/.
86.
Dominican Republic: Human Development Indicators. http://hdr.undp.org/en/countries/profiles/DOM.
87.
Lipsitch, M. et al. Transmission dynamics and control of severe acute respiratory syndrome. Science 300, 1966–1970 (2003).
ADS CAS PubMed PubMed Central Article Google Scholar
88.
Petrone, M. E. et al. Asynchronicity of endemic and emerging mosquito-borne disease outbreaks in the Dominican Republic. Repository: Arbovirus_Epi_DR. (2020), https://doi.org/10.5281/zenodo.4287651. More