in

Population genetics and evolutionary history of the endangered Eld’s deer (Rucervus eldii) with implications for planning species recovery

[adace-ad id="91168"]
  • 1.

    Banks, S. C. et al. How does ecological disturbance influence genetic diversity?. Trends Ecol. Evol. 28, 670–679 (2013).

    PubMed  Article  Google Scholar 

  • 2.

    Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred soay sheep in a free living island population. Evolution 53, 1259–1267 (1999).

    PubMed  Google Scholar 

  • 3.

    Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Cons. Genet. 11, 615–626 (2010).

    Article  Google Scholar 

  • 4.

    Frankham, R. Genetics and extinction. Biol. Cons. 126, 131–140 (2005).

    Article  Google Scholar 

  • 5.

    Markert, J. A. et al. Population genetic diversity and fitness in multiple environments. BMC. Evol Biol. 10, 205 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 6.

    Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Cons. 191, 495–503 (2015).

    Article  Google Scholar 

  • 7.

    Gray, T. N. E. et al. Rucervus eldii. The IUCN red list of threatened species. e.T4265A22166803 (2015). https://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T4265A22166803.en. Downloaded on 19 January 2020.

  • 8.

    Grubb, P. Artiodactyla. In Mammal Species of the World (eds Wilson, D. E. & Reeder, D. M.) 637–722 (Johns Hopkins University Press, Baltimore, 2005).

    Google Scholar 

  • 9.

    Salter, R. E. & Sayer, J. A. The brow-antlered deer in Myanmar—Its distribution and status. Oryx. 20, 241–245 (1986).

    Article  Google Scholar 

  • 10.

    McShea, W. J., Leimgruber, P., Aung, M., Monfort, S. L. & Wemmer, C. Range collapse of a tropical cervid (Cervus eldi) and the extent of remaining habitat in central Myanmar. Anim. Conserv. 2, 173–183 (1999).

    Article  Google Scholar 

  • 11.

    Zhang, Q., Zeng, Z., Ji, Y., Zhang, D. & Song, Y. Microsatellite variation in China’s Hainan Eld’s deer (Cervus eldi hainanus) and implications for their conservation. Cons. Genet. 9, 507–514 (2008).

    CAS  Article  Google Scholar 

  • 12.

    Zhang, Q., Zeng, Z., Sun, L. & Song, Y. The origin and phylogenetics of Hainan Eld’s deer and implications for Eld’ s deer conservation. Acta. Ther. Sin. 29, 365–371 (2009).

    CAS  Google Scholar 

  • 13.

    Ranjitsinh, M. K. Keibul Lamjao Sanctuary and the Brow-antlered deer—1972 with notes on a visit in 1975. J. Bom. Nat. His. Soc. 72, 243–255 (1975).

    Google Scholar 

  • 14.

    Hussain, S. A. & Badola, R. Conservation Ecology of Sangai and Its Wetland Habitat. Study Report Vol. I (Wildlife Institute of India, Dehra Dun, 2013).

    Google Scholar 

  • 15.

    McShea, W. J., Aung, M., Songer, M. & Connette, G. M. The challenges of protecting an endangered species in the developing world: A case history of Eld’s Deer conservation in Myanmar. Case Stud. Environ. 2, 1–9 (2018).

    Article  Google Scholar 

  • 16.

    Ginsburg, L., Ingavat, R. & Sen, S. A Middle Pleistocene (Loagian) cave fauna in Northern Thailand. Comptes Rendus de l’Académie des Sciences Paris. 294, 295–297 (1982).

    Google Scholar 

  • 17.

    Tougard, C. Y., Chaimanee, V., Sutheethron, S. & Triamwichanon, Jaeger, J. J. Extension of the geographic distribution of the giant panda (Ailuropoda) and reasons for its progressive disappearance in Southeast Asia during the Latest Middle Pleistocene. C. R. Acad. Sci. Paris. 323, 973–979 (1996).

    CAS  Google Scholar 

  • 18.

    Corbett, G. B. & Hill, J. E. The Mammals of the Indomalay Region: A Systematic Review. Natural History Museum Publications (Oxford University Press, Oxford, 1992).

    Google Scholar 

  • 19.

    Woodruff, D. S. & Turner, L. M. The Indochinese-Sundaic zoogeographic transition: A description and analysis of terrestrial mammal species distributions. J. Biogeo. 36, 803–821 (2009).

    Article  Google Scholar 

  • 20.

    Hassanin, A. & Ropiquet, A. Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the kouprey, Bos sauveli Urbain, 1937. Mol. Phylo. Evol. 33, 896–907 (2004).

    CAS  Article  Google Scholar 

  • 21.

    Meijaard, E. Solving mammalian riddles. A reconstruction of the Tertiary and Quaternary distribution of mammals and their palaeoenvironments in island South-East Asia. PhD Thesis, The Australian National University, Canberra (2004).

  • 22.

    Ropiquet, A. & Hassanin, A. Molecular evidence for the polyphyly of the genus Hemitragus (Mammalia, Bovidae). Mol. Phylo. Evol. 36, 154–168 (2005).

    CAS  Article  Google Scholar 

  • 23.

    Bird, M. I., Taylor, D. & Hunt, C. Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: A Savanna corridor in Sundaland?. Quat. Sci. Rev. 24, 2228–2242 (2005).

    ADS  Article  Google Scholar 

  • 24.

    Geist, V. Deer of the World: Their Evolution, Behaviour, and Ecology (Stackpole Books, Mechanicsburg, 1998).

    Google Scholar 

  • 25.

    Ellerman, J. R. & Morrison-Scott, T. C. S. Checklist of Palaearctic and Indian Mammals, 1758 to 1947 (British Museum Natural History, London, 1951).

    Google Scholar 

  • 26.

    Gilbert, C., Ropiquet, A. & Hassanin, A. Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): Systematics, morphology, and biogeography. Mol. Phylo. Evol. 40, 101–117 (2006).

    CAS  Article  Google Scholar 

  • 27.

    Hassanin, A. et al. Pattern and timing of diversification of cetartiodactyla (mammalia, laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 32–50 (2012).

    PubMed  Article  Google Scholar 

  • 28.

    Pitra, C., Fickel, J., Meijaard, E. & Groves, C. P. Evolution and phylogeny of old world deer. Mol. Phyl. Evol. 33, 880–895 (2004).

    CAS  Article  Google Scholar 

  • 29.

    Balakrishnan, C. N., Monfort, S. L., Gaur, A., Singh, L. & Sorenson, M. D. Phylogeography and conservation genetics of Eld’s deer (Cervus eldi). Mol. Ecol. 12, 1–10 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Thomas, O. The nomenclature and the geographical forms of the panolia deer (Rucervus eldi) and its relatives. J. Bom. Nat. His. Soci. 23, 363–367 (1918).

    Google Scholar 

  • 31.

    Angom, S., Kumar, A., Gupta, S. K. & Hussain, S. A. Analysis of mtDNA control region of an isolated population of Eld’s deer (Rucervus eldii) reveals its vulnerability to inbreeding. Mito. DNA. Part B. 2, 277–280 (2017).

    Article  Google Scholar 

  • 32.

    Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylo. Evol. 26, 1–7 (2002).

    Article  Google Scholar 

  • 33.

    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).

    PubMed  Article  Google Scholar 

  • 34.

    Hughes, A. R., Inouye, B. D., Johnson, M. T. J., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).

    PubMed  Article  Google Scholar 

  • 35.

    Haq, B. U., Hardenbol, J. & Vail, P. R. The chronology of fluctuating sea level since the Triassic. Sci. 235, 1156–1165 (1987).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Suraprasit, K., Jongautchariyakul, S., Yamee, C., Pothichaiya, C. & Bocherens, H. New fossil and isotope evidence for the Pleistocene zoogeographic transition and hypothesized savanna corridor in peninsular Thailand. Quat. Sci. Rev. 221, 105861 (2019).

    Article  Google Scholar 

  • 37.

    Suraprasit, K. et al. The middle Pleistocene vertebrate fauna from Khok Sung (Nakhon Ratchasima, Thailand): Biochronological and paleobiogeographical implications. Zoo Keys. 613, 1–157 (2016).

    Google Scholar 

  • 38.

    Nautiyal, C. M. & Chauhan, M. S. Late Holocene vegetation and climate change in Loktak Lake region, Manipur, based on pollen and chemical evidence. Palaeob. 58, 21–28 (2009).

    Google Scholar 

  • 39.

    Tripathi, S., Singh, Y. R., Nautiyal, C. M. & Thakur, B. Vegetation history, monsoonal fluctuations and anthropogenic impact during the last 2330 years from Loktak Lake (Ramsar site), Manipur, Northeast India: A pollen-based study. Palynology 42, 406–419 (2017).

    Article  Google Scholar 

  • 40.

    Leonard, J. A. et al. Phylogeography of vertebrates on the Sunda Shelf: A multi-species comparison. J. Biogeogr. 42, 871–879 (2015).

    Article  Google Scholar 

  • 41.

    Naish, D. Eld’s deer: Endangered, persisting in fragmented populations, and morphologically weird… but it wasn’t always so. Scientific American Blog Network. https://blogs.scientificamerican.com/tetrapod-zoology/elds-deer-endangered-fragmented-weird/. Accessed on 20 April, 2020 (2015).

  • 42.

    National Studbook of Sangai (Rucervus eldii eldii), Wildlife Institute of India, Dehradun and Central Zoo Authority (2018) New Delhi. TR. No. 2018/07. https://wii.gov.in/research_report2018.

  • 43.

    Angom, S., Tuboi, C., Ghazi, M. G. U., Badola, R. & Hussain, S. A. Demographic and genetic structure of a severely fragmented population of the endangered hog deer (Axis porcinus) in the Indo Burma biodiversity hotspot. PLoS ONE 15, e0210382 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Hartl, D. L. & Clark, A. G. Organisation of genetic variation. In Principles of Population Genetics (eds Hartl, D. L. & Clark, A. G.) 74–110 (Sinauer Associates, Sunderland, 1997).

    Google Scholar 

  • 45.

    Sharma, C. & Chauhan, M. S. Vegetation and climate since Last Glacial Maxima in Darjeeling (Mirik Lake), Eastern Himalaya. in Proc. 29th Int. Geol. Congr. Part B, 279.e288 (1994).

  • 46.

    Tripathi, S., Thakur, B., Nautiyal, C. M. & Bera, S. K. Floristic and climatic reconstruction in the Indo-Burma region for the last 13,000 cal. yr: A palynological interpretation from the endangered wetlands of Assam, northeast India. The Holocene. 30, 1–17 (2019).

    Google Scholar 

  • 47.

    Mehrotra, N., Shah, S. K. & Bhattacharyya, A. Review of palaeoclimate records from Northeast India based on pollen proxy data of Late Pleistocene-Holocene. Quat. Inter. 325, 41–54 (2014).

    Article  Google Scholar 

  • 48.

    Singh, N. R. Fluvial regime of the Manipur river basin and Loktak Lake with study of backflow. M. Tech thesis. Indian Institute of Technology (2006).

  • 49.

    Excoffier, L., Foll, M. & Petit, R. J. Genetic consequences of range expansions. Annu. Rev. Ecol. Evol. Syst. 40, 481–501 (2009).

    Article  Google Scholar 

  • 50.

    Slatkin, M. & Excoffier, L. Serial founder effects during range expansion: A spatial analog of genetic drift. Genetics 191, 171–181 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Cons. 170, 56–63 (2014).

    Article  Google Scholar 

  • 52.

    Hassanin, A., Ropiquet, A., Couloux, A. & Cruaud, C. Evolution of the mitochondrial genome in mammals living at high altitude: New insights from a study of the tribe Caprini (Bovidae, Antilopinae). J. Mol. Evol. 68, 293–310 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 53.

    Moore, S. S., Barendse, W., Berger, K. T., Armitage, S. M. & Hetzel, D. J. S. Bovine and ovine DNA microsatellites from the EMBL and GenBank databases. Anim. Genet. 23, 463–467 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Gaur, A. et al. Development and characterisation of 10 novel microsatellite markers from chital deer (Cervus axis) and their cross-amplification in other related species. Mol. Ecol. Not. 3, 607–609 (2003).

    CAS  Article  Google Scholar 

  • 55.

    Bishop, M. D. et al. A genetic linkage map for cattle. Genet. 136, 619–639 (1994).

    CAS  Article  Google Scholar 

  • 56.

    Marshall, T. C., Slate, J., Kruuk, L. E. & Pemberton, J. M. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639–655 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 57.

    DeWoody, J. A., Honeycutt, R. L. & Skow, L. C. Microsatellite markers in white-tailed deer. J. Hered. 86, 317–319 (1995).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Jones, K. C., Levine, K. F. & Banks, J. D. DNA-based genetic markers in black-tailed and mule deer for forensic applications. California Dept Fish Game. 86, 115–126 (2000).

    Google Scholar 

  • 59.

    Vaiman, D., Osta, R., Mercier, D., Grohs, C. & Leveziel, H. Characterization of five new bovine dinucleotide repeats. Anim. Genet. 23, 537–541 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 60.

    Brezinsky, L., Kemp, S. J. & Teale, A. J. ILSTS005: A polymorphic bovine microsatellite. Anim. Genet. 24, 75–76 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Zhang, Q., Ji, Y. J., Zeng, Z. G., Song, Y. L. & Zhang, D. X. Polymorphic microsatellite DNA markers for the vulnerable Hainan Eld’s deer (Cervus eldi hainanus) in China. Act. Zoo. Sin. 51, 530–534 (2005).

    CAS  Google Scholar 

  • 62.

    Buchanan, F. C. & Crawford, A. M. Ovine dinucleotide repeat polymorphism at the MAF70 locus. Anim. Genet. 23, 185 (1992).

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Poetsch, M., Seefeldt, S., Maschke, M. & Lignitz, E. Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer possible employment in forensic applications. Foren. Sci. Int. 6, 1–8 (2001).

    Article  Google Scholar 

  • 64.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Aci. Res. 22, 4673–4680 (1994).

    CAS  Article  Google Scholar 

  • 65.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Librado, P. & Rozas, J. DnaSPv5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  Article  Google Scholar 

  • 67.

    Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    Article  Google Scholar 

  • 68.

    Cheng, L., Connor, T. R., Sirén, J., Aanensen, D. M. & Corander, J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software. Mol. Biol. Evol. 30, 1224–1228 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Corander, J., Marttinen, P., Siren, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC. Bioinf. 9, 539 (2008).

    Article  CAS  Google Scholar 

  • 70.

    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 71.

    Akaike, H.  A new look at the statistical model identification. IEEE Trans. Autom. Control. 19, 716-723 (1974).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  • 72.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Meth. 9, 772 (2012).

    CAS  Article  Google Scholar 

  • 73.

    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 74.

    Grant, J. R. & Stothard, P. The CG View Server: A comparative genomics tool for circular genomes. Nucl. Aci. Res. 36, 181–184 (2008).

    Article  CAS  Google Scholar 

  • 75.

    Xia, X. & Xie, Z. DAMBE: Software package for data analysis in molecular biology and evolution. J. Hered. 92, 371–373 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 76.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 77.

    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 78.

    Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (artiodactyla, ruminantia) and the importance of the fossil record to systematics. BMC. Evol. Biol. 13, 166 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • 79.

    Dong, W., Pan, Y. & Liu, J. The earliest Muntiacus (Artiodactyla, Mammalia) from the Late Miocene of Yuanmou, southwestern, China. C. R. Palevol. 3, 379–386 (2004).

    Article  Google Scholar 

  • 80.

    Hulce, D., Li, X., Snyder-Leiby, T. & Liu, C. S. J. GeneMarker® genotyping software: Tools to increase the statistical power of DNA fragment analysis. J. Biomol. Tech. 22, S35–S36 (2011).

    PubMed Central  PubMed  Google Scholar 

  • 81.

    Valiere, N. GIMLET: A computer program for analysing genetic individual identification data. Mol. Ecol. Not. 2, 377–379 (2002).

    CAS  Google Scholar 

  • 82.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 83.

    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 099–1106 (2007).

    Article  Google Scholar 

  • 84.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genet. 155, 945–959 (2000).

    CAS  Google Scholar 

  • 85.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).

    CAS  PubMed  Article  Google Scholar 

  • 86.

    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualising STRUCTURE output and implementing the Evanno method. Cons. Genet. Res. 4, 359–361 (2012).

    Article  Google Scholar 

  • 87.

    Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Not. 4, 137–138 (2004).

    Article  Google Scholar 

  • 88.

    Archer, F. I., Adams, P. E. & Schneiders, B. B. strataG: An r package for manipulating, summarising and analysing population genetic data. Mol. Ecol. Res. 17, 5–11 (2017).

    CAS  Article  Google Scholar 

  • 89.

    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A program for detecting recent effective population size reductions from allele data frequencies. J. Hered. 90, 502–503 (1999).

    Article  Google Scholar 

  • 90.

    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genet. 144, 2001–2014 (1996).

    CAS  Article  Google Scholar 

  • 91.

    Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247 (1998).

    CAS  PubMed  Article  Google Scholar 

  • 92.

    Peel, D., Waples, R. S., Macbeth, G. M., Do, C. & Ovenden, J. R. Accounting for missing data in the estimation of contemporary genetic effective population size (Ne). Mol. Ecol. Res. 13, 243–253 (2013).

    CAS  Article  Google Scholar 

  • 93.

    Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Cons. Genet. 7, 167–184 (2006).

    Article  Google Scholar 

  • 94.

    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).

    PubMed  Article  Google Scholar 

  • 95.

    Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size from genetic data. Mol. Ecol. Res. 14, 209–214 (2014).

    CAS  Article  Google Scholar 

  • 96.

    Nikolic, N. & Chevalet, C. Detecting past changes in effective population size. Evol. Appl. 7, 663–681 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 97.

    Chevalet, C. & Nikolic, N. The distribution of coalescence times and distances between microsatellite alleles with changing effective population size. Theor. Popul. Biol. 77, 152–163 (2010).

    PubMed  MATH  Article  Google Scholar 

  • 98.

    Dallas, J. F. Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mam. Gen. 3, 452–456 (1992).

    CAS  Article  Google Scholar 

  • 99.

    Weber, J. L. & Wong, C. C. Mutation of human short tandem repeats. Hum. Mol. Genet. 2, 1123–1128 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 100.

    Brinkmann, B., Klintschar, M., Neuhuber, F., Huhne, J. & Rolf, B. Mutation rate in human microsatellites: Influence of the structure and length of the tandem repeat. Am. J. Hum. Genet. 62, 1408–1415 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 101.

    Sajantila, A., Lukka, M. & Syvänen, A. Experimentally observed germline mutations at human micro- and minisatellite loci. Eur. J. Hum. Genet. 7, 263–266 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 102.

    Ellegren, H. Microsatellite mutations in the germline: Implications for evolutionary inference. Trends. Genet. 16, 551–558 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 103.

    Hrbek, T., de Brito, R. A., Wang, B., Pletscher, L. S. & Cheverud, J. M. Genetic characterisation of a new set of recombinant inbred lines (LGXSM) formed from the intercross of SM/J and LG/J inbred mouse strains. Mam. Gen. 17, 417–429 (2006).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

    3 Questions: Ernest Moniz on the future of climate and energy under the Biden-Harris administration