1.
Royle, N. J., Smiseth, P. T. & Kölliker, M. The Evolution of Parental Care (Oxford University Press, Oxford, 2012).
Google Scholar
2.
Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).
Article Google Scholar
3.
Trivers, R. L. Sexual Selection and the Descent of Man 136–179 (Aldine Press, Chicago, 1972).
Google Scholar
4.
Lessells, C. M. The Evolution of Parental Care (Oxford Univeristy Press, Oxford, 2012).
Google Scholar
5.
Houston, A. I., Székely, T. & McNamara, J. M. Conflict between parents over care. Trends Ecol. Evol. 20, 33–38 (2005).
Article Google Scholar
6.
Lessells, C. M. The evolutionary outcome of sexual conflict. Philos. Trans. R. Soc. B Biol. Sci. 361, 301–317 (2006).
CAS Article Google Scholar
7.
Houston, A. I. & Davies, N. B. The evolution of cooperation and life history in the dunnock, Prunella modularis. Behav. Ecol. Ecol. Conseq. Adapt. Behav. 20, 471–487 (1985).
Google Scholar
8.
McNamara, J. M., Gasson, C. E. & Houston, A. I. Incorporating rules for responding into evolutionary games. Nature 401, 368–371 (1999).
ADS CAS PubMed Google Scholar
9.
McNamara, J. M., Houston, A. I., Barta, Z. & Osorno, J. L. Should young ever be better off with one parent than with two?. Behav. Ecol. 14, 301–310 (2003).
Article Google Scholar
10.
Lessells, C. M. & McNamara, J. M. Sexual conflict over parental investment in repeated bouts: Negotiation reduces overall care. Proc. R. Soc. B Biol. Sci. 279, 1506–1514 (2012).
CAS Article Google Scholar
11.
Johnstone, R. A. & Hinde, C. A. Negotiation over offspring care – how should parents respond to each other’s efforts?. Behav. Ecol. 17, 818–827 (2006).
Article Google Scholar
12.
Royle, N. J., Hartley, I. R. & Parker, G. A. Sexual conflict reduces offspring fitness in zebra finches. Nature 416, 733–736 (2002).
ADS CAS Article Google Scholar
13.
Johnstone, R. A. et al. Reciprocity and conditional cooperation between great tit parents. Behav. Ecol. 25, 216–222 (2014).
Article Google Scholar
14.
Savage, J. L., Browning, L. E., Manica, A., Russell, A. F. & Johnstone, R. A. Turn-taking in cooperative offspring care: By-product of individual provisioning behavior or active response rule?. Behav. Ecol. Sociobiol. 71, 162 (2017).
Article Google Scholar
15.
Raihani, N. J., Nelson-Flower, M. J., Moyes, K., Browning, L. E. & Ridley, A. R. Synchronous provisioning increases brood survival in cooperatively breeding pied babblers. J. Anim. Ecol. 79, 44–52 (2010).
Article Google Scholar
16.
Mariette, M. M. & Griffith, C. S. The adaptive significance of provisioning and foraging coordination between breeding partners. Am. Nat. 185, 270–280 (2015).
Article Google Scholar
17.
Bebbington, K. & Hatchwell, B. J. Coordinated parental provisioning is related to feeding rate and reproductive success in a songbird. Behav. Ecol. 27, 652–659 (2016).
Article Google Scholar
18.
Leniowski, K. & Węgrzyn, E. Synchronisation of parental behaviours reduces the risk of nest predation in a socially monogamous passerine bird. Sci. Rep. 8, 7385 (2018).
ADS CAS Article Google Scholar
19.
Shen, S. F., Chen, H. C., Vehrencamp, S. L. & Yuan, H. W. Group provisioning limits sharing conflict among nestlings in joint-nesting Taiwan yuhinas. Biol. Lett. 6, 318–321 (2010).
Article Google Scholar
20.
Savage, J. L. & Hinde, C. A. What can we quantify about carer behavior?. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00418 (2019).
Article Google Scholar
21.
Baldan, D., Curk, T., Hinde, C. A. & Lessells, C. M. Alternation of nest visits varies with experimentally manipulated workload in brood-provisioning great tits. Anim. Behav. 156, 139–146. https://doi.org/10.1016/j.anbehav.2019.08.004 (2019).
Article Google Scholar
22.
Griffioen, M., Müller, W. & Iserbyt, A. A fixed agreement—consequences of brood size manipulation on alternation in blue tits. PeerJ 7, e6826. https://doi.org/10.7717/peerj.6826 (2019).
Article PubMed PubMed Central Google Scholar
23.
Iserbyt, A., Fresneau, N., Kortenhoff, T., Eens, M. & Muller, W. Decreasing parental task specialization promotes conditional cooperation. Sci. Rep. 7, 20 (2017).
Article Google Scholar
24.
Baldan, D., Hinde, C. A. & Lessells, C. M. Turn-taking between provisioning parents: Partitioning alternation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00448 (2019).
Article Google Scholar
25.
Lejeune, L. et al. Environmental effects on parental care visitation patterns in blue tits Cyanistes caeruleus. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00356 (2019).
Article Google Scholar
26.
Longcore, T. & Rich, C. Ecological light pollution. Front. Ecol. Environ. 2, 191–198. https://doi.org/10.1890/1540-9295(2004)002[0191:Elp]2.0.Co;2 (2004).
Article Google Scholar
27.
Warren, P. S., Katti, M., Ermann, M. & Brazel, A. Urban bioacoustics: It’s not just noise. Anim. Behav. 71, 491–502. https://doi.org/10.1016/j.anbehav.2005.07.014 (2006).
Article Google Scholar
28.
McCarthy, M. P., Best, M. J. & Betts, R. A. Climate change in cities due to global warming and urban effects. Geophys. Res. Lett. https://doi.org/10.1029/2010gl042845 (2010).
Article Google Scholar
29.
Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18. https://doi.org/10.1111/j.1474-919X.2008.00899.x (2009).
Article Google Scholar
30.
Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. 7, 5014. https://doi.org/10.1038/s41598-017-04575-y (2017).
ADS CAS Article PubMed PubMed Central Google Scholar
31.
Seress, G. et al. Impact of urbanization on abundance and phenology of caterpillars and consequences for breeding in an insectivorous bird. Ecol. Appl. 28, 1143–1156. https://doi.org/10.1002/eap.1730 (2018).
Article PubMed Google Scholar
32.
Seress, G., Sándor, K., Evans, K. L. & Liker, A. Food availability limits avian reproduction in the city: An experimental study on great tits Parus major. J. Anim. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2656.13211 (2020).
Article Google Scholar
33.
Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145. https://doi.org/10.1111/j.1600-048X.2009.04362.x (2009).
Article Google Scholar
34.
Peach, W. J., Mallord, J. W., Ockendon, N., Orsman, C. J. & Haines, W. G. Depleted suburban house sparrow Passer domesticus population not limited by food availability. Urban Ecosyst. 21, 1053–1065. https://doi.org/10.1007/s11252-018-0784-4 (2018).
Article Google Scholar
35.
Schoech, S. J. et al. Food supplementation: A tool to increase reproductive output? A case study in the threatened Florida Scrub-Jay. Biol. Cons. 141, 162–173. https://doi.org/10.1016/j.biocon.2007.09.009 (2008).
Article Google Scholar
36.
Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112. https://doi.org/10.1016/j.anbehav.2013.01.023 (2013).
Article Google Scholar
37.
Isaksson, C. & Andersson, S. Carotenoid diet and nestling provisioning in urban and rural great tits Parus major. J. Avian Biol. 38, 564–572. https://doi.org/10.1111/j.2007.0908-8857.04030.x (2007).
Article Google Scholar
38.
New, T. R. Insect Conservation and Urban Environments (Springer, Berlin, 2015).
Google Scholar
39.
Helden, A., Stamp, G. & Leather, S. Urban biodiversity: Comparison of insect assemblages on native and non-native trees. Urban Ecosyst. 15, 611–624. https://doi.org/10.1007/s11252-012-0231-x (2012).
Article Google Scholar
40.
Tallamy, D. W. & Shropshire, K. J. Ranking lepidopteran use of native versus introduced plants. Conserv. Biol. 23, 941–947 (2009).
Article Google Scholar
41.
Burghardt, K. T., Tallamy, D. W., Philips, C. & Shropshire, K. J. Non-native plants reduce abundance, richness, and host specialization in lepidopteran communities. Ecosphere 1, art11. https://doi.org/10.1890/es10-00032.1 (2010).
Article Google Scholar
42.
Marciniak, B., Nadolski, J., Nowakowska, M., Loga, B. & Bańbura, J. Habitat and annual variation in arthropod abundance affects blue tit Cyanistes caeruleus reproduction. Acta Ornithol. 42, 53–62 (2007).
Article Google Scholar
43.
Neil, K. & Wu, J. Effects of urbanization on plant flowering phenology: A review. Urban Ecosyst. 9, 243–257. https://doi.org/10.1007/s11252-006-9354-2 (2006).
Article Google Scholar
44.
Lessells, C. M. & Stephens, D. W. Central place foraging: Single-prey loaders again. Anim. Behav. 31, 238–243 (1983).
Article Google Scholar
45.
Orians, G. H. & Pearson, N. E. On the Theory of Central Place Foraging. Analysis of Ecological Systems 155–177 (Ohio State University Press, Columbus, 1979).
Google Scholar
46.
Arnold, K. E., Ramsay, S. L., Henderson, L. & Larcombe, S. D. Seasonal variation in diet quality: Antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biol. J. Lin. Soc. 99, 708–717. https://doi.org/10.1111/j.1095-8312.2010.01377.x (2010).
Article Google Scholar
47.
Ouyang, J. Q., Baldan, D., Munguia, C. & Davies, S. Genetic inheritance and environment determine endocrine plasticity to urban living. Proc. R. Soc. B Biol. Sci. 286, 20191215. https://doi.org/10.1098/rspb.2019.1215 (2019).
CAS Article Google Scholar
48.
Newhouse, M. J., Marra, P. P. & Johnson, L. S. Reproductive success of house wrens in suburban and rural landscapes. Wilson J. Ornithol. 120, 99–104 (2008).
Article Google Scholar
49.
Potti, J., Dávila, J. A., Tella, J. L., Frías, Ó & Villar, S. Gender and viability selection on morphology in fledgling pied flycatchers. Mol. Ecol. 11, 1317–1326. https://doi.org/10.1046/j.1365-294X.2002.01545.x (2002).
CAS Article PubMed Google Scholar
50.
Balogh, A. L., Ryder, T. B. & Marra, P. P. Population demography of Gray Catbirds in the suburban matrix: Sources, sinks and domestic cats. J. Ornithol. 152, 717–726. https://doi.org/10.1007/s10336-011-0648-7 (2011).
Article Google Scholar
51.
Stillfried, M. et al. Do cities represent sources, sinks or isolated islands for urban wild boar population structure?. J. Appl. Ecol. 54, 272–281. https://doi.org/10.1111/1365-2664.12756 (2017).
Article Google Scholar
52.
Holmes, R. T. Foraging patterns of forest birds: Male–female differences. Wilson Bull. 98, 196–213 (1986).
Google Scholar
53.
Chaves, F. G., Vecchi, M. B. & Alves, M. A. S. Intersexual differences in the foraging behavior of Formicivora littoralis (Thamnophilidae), an endangered Neotropical bird. Stud. Neotrop. Fauna Environ. 52, 179–186. https://doi.org/10.1080/01650521.2017.1335275 (2017).
Article Google Scholar
54.
Mänd, R., Rasmann, E. & Mägi, M. When a male changes his ways: Sex differences in feeding behavior in the pied flycatcher. Behav. Ecol. 24, 853–858. https://doi.org/10.1093/beheco/art025 (2013).
Article Google Scholar
55.
Kölliker, M., Brinkhof, M. W. G., Heeb, P., Fitze, P. S. & Richner, H. The quantitative genetic basis of offspring solicitation and parental response in a passerine bird with biparental care. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 2127–2132 (2000).
Article Google Scholar
56.
Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).
CAS Article Google Scholar
57.
Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: Diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia 193, 377–388. https://doi.org/10.1007/s00442-020-04678-w (2020).
ADS Article PubMed PubMed Central Google Scholar
58.
Gering, J. C. & Blair, R. B. Predation on artificial bird nests along an urban gradient: Predatory risk or relaxation in urban environments?. Ecography 22, 532–541. https://doi.org/10.1111/j.1600-0587.1999.tb01283.x (1999).
Article Google Scholar
59.
Fischer, J. D., Cleeton, S. H., Lyons, T. P. & Miller, J. R. Urbanization and the predation paradox: The role of trophic dynamics in structuring vertebrate communities. Bioscience 62, 809–818. https://doi.org/10.1525/bio.2012.62.9.6 (2012).
Article Google Scholar
60.
Vincze, E. et al. Does urbanization affect predation of bird nests? A meta-analysis. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00029 (2017).
Article Google Scholar
61.
Griggio, M. & Hoi, H. An experiment on the function of the long-term pair bond period in the socially monogamous bearded reedling. Anim. Behav. 82, 1329–1335. https://doi.org/10.1016/j.anbehav.2011.09.016 (2011).
Article Google Scholar
62.
Griffith, S. C. Cooperation and coordination in socially monogamous birds: Moving away from a focus on sexual conflict. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00455 (2019).
Article Google Scholar
63.
Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126. https://doi.org/10.1016/j.tree.2014.11.007 (2015).
Article PubMed Google Scholar
64.
Liebl, A. L. & Martin, L. B. Exploratory behaviour and stressor hyper-responsiveness facilitate range expansion of an introduced songbird. Proc. Biol. Sci. 279, 4375–4381. https://doi.org/10.1098/rspb.2012.1606 (2012).
Article PubMed PubMed Central Google Scholar
65.
Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life?. Glob. Change Biol. 24, 1452–1469. https://doi.org/10.1111/gcb.13969 (2018).
ADS Article Google Scholar
66.
Patricelli, G. L. & Blickley, J. L. Avian communication in urban noise: Causes and consequences of vocal adjustment. Auk 123, 639–649. https://doi.org/10.1093/auk/123.3.639 (2006).
Article Google Scholar
67.
Grabarczyk, E. E. & Gill, S. A. Anthropogenic noise affects male house wren response to but not detection of territorial intruders. PLoS One 14, e0220576. https://doi.org/10.1371/journal.pone.0220576 (2019).
CAS Article PubMed PubMed Central Google Scholar
68.
Schroeder, J., Nakagawa, S., Cleasby, I. R. & Burke, T. Passerine birds breeding under chronic noise experience reduced fitness. PLoS One 7, e39200. https://doi.org/10.1371/journal.pone.0039200 (2012).
ADS CAS Article PubMed PubMed Central Google Scholar
69.
Halfwerk, W. et al. Low-frequency songs lose their potency in noisy urban conditions. Proc. Natl. Acad. Sci. 108, 14549–14554. https://doi.org/10.1073/pnas.1109091108 (2011).
ADS Article PubMed Google Scholar
70.
Mariette, M. M. Acoustic cooperation: Acoustic communication regulates conflict and cooperation within the family. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00445 (2019).
Article Google Scholar
71.
Johnstone, R. A. & Savage, J. L. Conditional cooperation and turn-taking in parental care. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00335 (2019).
Article Google Scholar
72.
Ihle, M., Pick, J. L., Winney, I. S., Nakagawa, S. & Burke, T. Measuring up to reality: Null models and analysis simulations to study parental coordination over provisioning offspring. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00142 (2019).
Article Google Scholar
73.
Ihle, M. et al. Rearing success does not improve with apparent pair coordination in offspring provisioning. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2019.00405 (2019).
Article Google Scholar
74.
Seress, G., Lipovits, A., Bokony, V. & Czuni, L. Quantifying the urban gradient: A practical method for broad measurements. Landsc. Urban Plan. 131, 42–50. https://doi.org/10.1016/j.landurbplan.2014.07.010 (2014).
Article Google Scholar
75.
75Johnson, L. S. in The Birds of North America (ed Editor A. F. Poole) (2014).
76.
Pearse, A. T., Cavitt, J. F. & Cully, J. F. effects of food supplementation on female nest attentiveness and incubation mate feeding in two sympatric wren species. Wilson Bull. 116, 23–30 (2004).
Article Google Scholar
77.
Greenewalt, C. H. & Jones, F. M. Photographic studies of the feeding of nestling house wrens. Proc. Am. Philos. Soc. 99, 200–204 (1955).
Google Scholar
78.
Welbers, A. A. M. H. et al. Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00055 (2017).
Article Google Scholar
79.
Baldan, D. & Griggio, M. Pair coordination is related to later brood desertion in a provisioning songbird. Anim. Behav. 156, 147–152. https://doi.org/10.1016/j.anbehav.2019.08.002 (2019).
Article Google Scholar
80.
Pinheiro J, Bates D, DebRoy S, Sarkar D & Team, R. C. nlme: Linear and nonlinear mixed effects models. (2019).
81.
Rolinski, S., Horn, H., Petzoldt, T. & Paul, L. Identifying cardinal dates in phytoplankton time series to enable the analysis of long-term trends. Oecologia 153, 997–1008 (2007).
ADS Article Google Scholar
82.
Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: A practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430. https://doi.org/10.1111/2041-210x.13234 (2019).
Article Google Scholar
83.
Martin, E. mclogit: Multinomial logit models, with or without random effects or overdispersion (2020).
84.
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).
Article Google Scholar
85.
Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Lawrence Erlbaum Associates, Hillsdale, 1988).
Google Scholar
86.
Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. https://doi.org/10.3389/fpsyg.2013.00863 (2013).
Article PubMed PubMed Central Google Scholar
87.
Lenth, R. emmeans: Estimated marginal means, aka least-squares means. (2020). More