in

Winter movement patterns of a globally endangered avian scavenger in south-western Europe

[adace-ad id="91168"]
  • 1.

    Hansson, L. A. & Akesson, S. Animal Movement Across Scales (Oxford University Press, Oxford, 2014).

    Google Scholar 

  • 2.

    Dingle, H. & Drake, V. A. What is migration?. Bioscience 57, 113–121 (2007).

    Article  Google Scholar 

  • 3.

    Chapman, B. B., Brönmark, C., Nilsson, J. Å. & Hansson, L. A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).

    Article  Google Scholar 

  • 4.

    Newton, I. The Migration Ecology of Birds (Elservier, New York, 2010).

    Google Scholar 

  • 5.

    Cadahía, L. et al. Advancement of spring arrival in a long-term study of a passerine bird: Sex, age and environmental effects. Oecologia 184, 917–929 (2017).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Ogonowski, M. S. & Conway, C. J. Migratory decisions in birds: Extent of genetic versus environmental control. Oecologia 161, 199–207 (2009).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Berthold, P., Helbig, A. J., Mohr, G. & Querner, U. Rapid microevolution of migratory behaviour in a wild bird species. Nature 360, 668–670 (1992).

    ADS  Article  Google Scholar 

  • 8.

    Studds, C. E., Kyser, T. K. & Marra, P. P. Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory songbird. Proc. Natl. Acad. Sci. 105, 2929–2933 (2008).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Dale, C. A. & Leonard, M. L. Reproductive consequences of migration decisions by Ipswich Sparrows (Passerculus sandwichensis princeps). Can. J. Zool. 89, 100–108 (2011).

    Article  Google Scholar 

  • 10.

    Gilroy, J. J., Gill, J. A., Butchart, S. H. M., Jones, V. R. & Franco, A. M. A. Migratory diversity predicts population declines in birds. Ecol. Lett. 19, 308–317 (2016).

    PubMed  Article  Google Scholar 

  • 11.

    Teitelbaum, C. S. et al. Experience drives innovation of new migration patterns of whooping cranes in response to global change. Nat. Commun. 7, 12793. https://doi.org/10.1038/ncomms12793 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Rubolini, D., Møller, A. P., Rainio, K. & Lehikoinen, E. Intraspecific consistency and geographic variability in temporal trends of spring migration phenology among european bird species. Clim. Res. 35, 135–146 (2007).

    Article  Google Scholar 

  • 13.

    Greig, E. I., Wood, E. M. & Bonter, D. N. Winter range expansion of a hummingbird is associated with urbanization and supplementary feeding. Proc. R. Soc. B Biol. Sci. 248, 20170256. https://doi.org/10.1098/rspb.2017.0256 (2017).

    Article  Google Scholar 

  • 14.

    Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. B Biol. Sci. 281, 20132161. https://doi.org/10.1098/rspb.2013.2161 (2013).

    Article  Google Scholar 

  • 15.

    Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).

    PubMed  Article  Google Scholar 

  • 16.

    Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 7. https://doi.org/10.1186/s40462-016-0070-0 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 17.

    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 6179. https://doi.org/10.1126/science.1242552 (2014).

    CAS  Article  Google Scholar 

  • 18.

    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Wilmers, C. C. et al. The golden age of bio-logging: How animal-borne sensors are advancing the frontiers of ecology. Ecology 96, 1741–1753 (2015).

    PubMed  Article  Google Scholar 

  • 20.

    Weimerskirch, H., Delord, K., Guitteaud, A., Phillips, R. A. & Pinet, P. Extreme variation in migration strategies between and within wandering albatross populations during their sabbatical year, and their fitness consequences. Sci. Rep. 5, 1–7. https://doi.org/10.1038/srep08853 (2015).

    CAS  Article  Google Scholar 

  • 21.

    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 6240. https://doi.org/10.1126/science.aaa2478 (2015).

    CAS  Article  Google Scholar 

  • 22.

    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Edelhoff, H., Signer, J. & Balkenhol, N. Path segmentation for beginners: An overview of current methods for detecting changes in animal movement patterns. Mov. Ecol. 4, 21. https://doi.org/10.1186/s40462-016-0086-5 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Marzluff, J. M., Millspaugh, J. J., Hurvitz, P. & Handcock, M. S. Relating resources to a probabilistic measure of space use: Forest fragments and Steller’s Jays. Ecology 85, 1411–1427 (2004).

    Article  Google Scholar 

  • 25.

    Börger, L., Dalziel, B. D. & Fryxell, J. M. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650 (2008).

    PubMed  Article  Google Scholar 

  • 26.

    López-López, P., García-Ripollés, C. & Urios, V. Food predictability determines space use of endangered vultures: Implications for management of supplementary feeding. Ecol. Appl. 24, 938–949 (2014).

    PubMed  Article  Google Scholar 

  • 27.

    van Beest, F. M., Mysterud, A., Loe, L. E. & Milner, J. M. Forage quantity, quality and depletion as scaledependent mechanisms driving habitat selection of a large browsing herbivore. J. Anim. Ecol. 79, 910–922 (2010).

    PubMed  Google Scholar 

  • 28.

    Edwards, M. A., Nagy, J. A. & Derocher, A. E. Low site fidelity and home range drift in a wide-ranging, large Arctic omnivore. Anim. Behav. 77, 23–28 (2009).

    Article  Google Scholar 

  • 29.

    Cagnacci, F. et al. Partial migration in roe deer: Migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos 120, 1790–1802 (2011).

    Article  Google Scholar 

  • 30.

    Monsarrat, S. et al. How predictability of feeding patches affects home range and foraging habitat selection in AVIAN social scavengers?. PLoS One 8, e53077. https://doi.org/10.1371/journal.pone.0053077 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 1–13. https://doi.org/10.1038/s41598-018-33564-y (2018).

    CAS  Article  Google Scholar 

  • 32.

    López-López, P., Benavent-Corai, J., García-Ripollés, C. & Urios, V. Scavengers on the move: Behavioural changes in foraging search patterns during the annual cycle. PLoS One 8, e54352. https://doi.org/10.1371/journal.pone.0054352 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Devault, T. L., Reinhart, B. D., Brisbin, I. L. & Rhodes, O. E. Flight behavior of Black and Turkey vultures: Implications for reducing bird–aircraft collisions. J. Wildl. Man. 69, 610–608 (2005).

    Article  Google Scholar 

  • 34.

    Alarcón, P. A. E. & Lambertucci, S. A. A three-decade review of telemetry studies on vultures and condors. Mov. Ecol. 6, 13. https://doi.org/10.1186/s40462-018-0133-5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    BirdLife International. IUCN Red List for birds. https://www.birdlife.org (2016).

  • 36.

    Del Moral, J. C. El alimoche común en España. Población reproductora en 2008 y método de censo.(2009).

  • 37.

    BirdLife International. European Red List of Birds. Office for Official Publications of the European Countries (2015).

  • 38.

    Phipps, W. L. et al. Spatial and temporal variability in migration of a soaring raptor across three continents. Front. Ecol. Evol. 7, 323. https://doi.org/10.3389/fevo.2019.00323 (2019).

    Article  Google Scholar 

  • 39.

    Oppel, S. et al. High juvenile mortality during migration in a declining population of a long-distance migratory raptor. Ibis 157, 545–557 (2015).

    Article  Google Scholar 

  • 40.

    García-Ripollés, C., López-López, P. & Urios, V. First description of migration and wintering of adult egyptian vultures neophron percnopterus tracked by GPS satellite telemetry. Bird Study 57, 261–265 (2010).

    Article  Google Scholar 

  • 41.

    SEO/BirdLife. Atlas de las aves en invierno en España 2007–2010. Atlas de las aves en invierno en España 2007–2010 (2012).

  • 42.

    Di Vittorio, M. et al. Wintering of Egyptian vultures (Neophron percnopterus) in Sicily: New data. Arx. Misc. Zool. 1, 114–116 (2016).

    Article  Google Scholar 

  • 43.

    Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).

    Article  Google Scholar 

  • 44.

    Sanz-Aguilar, A., De Pablo, F. & Donázar, J. A. Age-dependent survival of island vs. mainland populations of two avian scavengers: Delving into migration costs. Oecologia 179, 405–414 (2015).

    ADS  PubMed  Article  Google Scholar 

  • 45.

    Mateo-Tomás, P. & Olea, P. P. Diagnosing the causes of territory abandonment by the Endangered Egyptian vulture Neophron percnopterus: The importance of traditional pastoralism and regional conservation. Oryx. 44, 424–433 (2010).

    Article  Google Scholar 

  • 46.

    Donázar, J. A. Los Buitres Ibéricos: Biología y Conservación. (Reyero, 1993).

  • 47.

    Felicísimo Pérez, Á. M. Elaboración del atlas climático de Extremadura mediante un Sistema de Información Geográfica. GeoFocus 1, 17–23 (2001).

    Google Scholar 

  • 48.

    López-López, P., Maiorano, L., Falcucci, A., Barba, E. & Boitani, L. Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe. Acta Oecol. 37, 399–412 (2011).

    Article  Google Scholar 

  • 49.

    Traba, J., García De La Morena, E. L., Morales, M. B. & Suárez, F. Determining high value areas for steppe birds in Spain: Hot spots, complementarity and the efficiency of protected areas. Biodivers. Conserv. 16, 3255–3275 (2007).

    Article  Google Scholar 

  • 50.

    Arrondo, E. et al. Invisible barriers: Differential sanitary regulations constrain vulture movements across country borders. Biol. Conserv. 219, 46–52 (2018).

    Article  Google Scholar 

  • 51.

    Sergio, F. et al. No effect of satellite tagging on survival, recruitment, longevity, productivity and social dominance of a raptor, and the provisioning and condition of its offspring. J. App. Ecol. 52, 1665–1675 (2015).

    Article  Google Scholar 

  • 52.

    Finlayson, C. Birds of the Strait of Gibraltar (T. & A. D Poyser, London, 1992).

    Google Scholar 

  • 53.

    Panuccio, M., Martín, B., Morganti, M., Onrubia, A. & Ferrer, M. Long-term changes in autumn migration dates at the Strait of Gibraltar reflect population trends of soaring birds. Ibis 159, 55–65 (2017).

    Article  Google Scholar 

  • 54.

    Onrubia, A. Spatial and Temporal Patterns of Soaring Birds Migration Through the Strait of Gibraltar (University of León, Spain, 2015).

    Google Scholar 

  • 55.

    Zuberogoitia, I., Zabala, J., Martínez, J. A., Martínez, J. E. & Azkona, A. Effect of human activities on Egyptian vulture breeding success. Anim. Conserv. 11, 313–320 (2008).

    Article  Google Scholar 

  • 56.

    Signer, J. & Balkenhol, N. Reproducible home ranges (rhr): A new, user-friendly R package for analyses of wildlife telemetry data. Wildl. Soc. B. 39, 358–363 (2015).

    Article  Google Scholar 

  • 57.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. https://qgis.osgeo.org. Qgisorg (2014).

  • 58.

    Hooten, M. B., Hanks, E. M., Johnson, D. S. & Alldredge, M. W. Reconciling resource utilization and resource selection functions. J. Anim. Ecol. 86, 1146–1154 (2013).

    Article  Google Scholar 

  • 59.

    Boyce, M. S. Scale for resource selection functions. Divers. Distrib. 12, 269–276 (2006).

    Article  Google Scholar 

  • 60.

    R Development Core Team. R: A Language and Environment for Statistical Computing. (2018).

  • 61.

    Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour?. J. Anim. Ecol. 75, 1182–1189 (2006).

    PubMed  Article  Google Scholar 

  • 62.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48 (2015).

    Article  Google Scholar 

  • 63.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 73–79 (2016).

    Article  Google Scholar 

  • 64.

    Fox, J. et al. car: Companion to Applied Regression. In: R Package Version 2.0-21 (2018).

  • 65.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.15-15.https://doi.org/10.1080/00031305.1980.10483031 (2019).

  • 66.

    Donovan, T. M. et al. Quantifying home range habitat requirements for bobcats (Lynx rufus) in Vermont, USA. Biol. Conserv. 144, 2799–2809 (2011).

    Article  Google Scholar 

  • 67.

    Eggeman, S. L., Hebblewhite, M., Bohm, H., Whittington, J. & Merrill, E. H. Behavioural flexibility in migratory behaviour in a long-lived large herbivore. J. Anim. Ecol. 85, 785–797 (2016).

    PubMed  Article  Google Scholar 

  • 68.

    Blanco, G. & Tella, J. L. Temporal, spatial and social segregation of red-billed choughs between two types of communal roost: A role for mating and territory acquisition. Anim. Behav. 59, 1219–1227 (1999).

    Article  Google Scholar 

  • 69.

    Lambertucci, S. A. & Ruggiero, A. Cliffs used as communal roosts by andean condors protect the birds from weather and predators. PLoS One 8, e67304. https://doi.org/10.1371/journal.pone.0067304 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 70.

    Bijleveld, A. I., Egas, M., van Gils, J. A. & Piersma, T. Beyond the information centre hypothesis: Communal roosting for information on food, predators, travel companions and mates?. Oikos 119, 277–285 (2010).

    Article  Google Scholar 

  • 71.

    Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 248–258 (2012).

    Google Scholar 

  • 72.

    Sanz-Aguilar, A., Jovani, R., Melián, C. J., Pradel, R. & Tella, J. L. Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species. Ecology 96, 1650–1660 (2015).

    Article  Google Scholar 

  • 73.

    Margalida, A., Donázar, J. A., Carrete, M. & Sánchez-Zapata, J. A. Sanitary versus environmental policies: Fitting together two pieces of the puzzle of European vulture conservation. J. Appl. Ecol. 47, 931–935 (2010).

    Article  Google Scholar 

  • 74.

    Negro, J. J. et al. An unusual source of essential carotenoids. Nature 416, 807–808 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 75.

    Rey Benayas, J. M. & De La Montaña, E. Identifying areas of high-value vertebrate diversity for strengthening conservation. Biol. Conserv. 114, 357–370 (2003).

    Article  Google Scholar 

  • 76.

    Botha, A. J. et al.Multi-species action plan to conserve African-Eurasian vultures (vulture MsAP). Raptors MOU Technical Publication (2017).

  • 77.

    Santangeli, A., Girardello, M., Buechley, E. R., Eklund, J. & Phipps, W. L. Navigating spaces for implementing raptor research and conservation under varying levels of violence and governance in the Global South. Biol. Conserv. 239, 108212. https://doi.org/10.1016/j.biocon.2019.108212 (2019).

    Article  Google Scholar 

  • 78.

    Sanz-Aguilar, A. et al. Action on multiple fronts, illegal poisoning and wind farm planning, is required to reverse the decline of the Egyptian vulture in southern Spain. Biol. Conserv. 187, 10–18 (2015).

    Article  Google Scholar 

  • 79.

    Blanco, G., Cortés-Avizanda, A., Frías, Ó., Arrondo, E. & Donázar, J. A. Livestock farming practices modulate vulture diet-disease interactions. Global Ecol. Conserv. 17, e00518. https://doi.org/10.1016/j.gecco.2018.e00518 (2019).

    Article  Google Scholar 

  • 80.

    Duriez, O. et al. Vultures attacking livestock: A problem of vulture behavioural change or farmers’ perception?. Bird Conserv. Int. 29, 437–453 (2019).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    A controllable membrane to pull carbon dioxide out of exhaust streams

    More than a meal