1.
Patterson EI, Villinger J, Muthoni JN, Dobel-Ober L, Hughes GL. Exploiting insect-specific viruses as a novel strategy to control vector-borne disease. Curr Opin Insect Sci. 2020;39:50–56. https://doi.org/10.1016/j.cois.2020.02.005.
Article PubMed Google Scholar
2.
Tawidian P, Rhodes VL, Michel K. Mosquito-fungus interactions and antifungal immunity. Insect Biochem Mol Biol. 2019;111:103182. https://doi.org/10.1016/j.ibmb.2019.103182.
CAS Article PubMed PubMed Central Google Scholar
3.
Guégan M, Zouache K, Démichel C, Minard G, Tran-Van V, Potier P, et al. The mosquito holobiont:. fresh insight into mosquito-microbiota interactions. Microbiome. 2018;6:49. https://doi.org/10.1186/s40168-018-0435-2.
Article PubMed PubMed Central Google Scholar
4.
Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldana MA, et al. Microbiome interaction networks and community structure from laboratory-reared and field-collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus mosquito vectors. Front Microbiol. 2018;9:2160. https://doi.org/10.3389/fmicb.2018.02160.
Article PubMed PubMed Central Google Scholar
5.
Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol. 2012;21:5138–50. https://doi.org/10.1111/j.1365-294X.2012.05759.x.
CAS Article PubMed Google Scholar
6.
Ricci I, Cancrini G, Gabrielli S, D’Amelio S, Favia G. Searching for Wolbachia (Rickettsiales: Rickettsiaceae) in mosquitoes (Diptera: Culicidae): large polymerase chain reaction survey and new identifications. J Med Entomol. 2002;39:562–7.
Article Google Scholar
7.
Rasgon JL, Scott TW. An initial survey for Wolbachia (Rickettsiales: Rickettsiaceae) infections in selected California mosquitoes (Diptera: Culicidae). J Med Entomol. 2004;41:255–7.
Article Google Scholar
8.
Gloria-Soria A, Chiodo TG, Powell JR. Lack of evidence for natural wolbachia infections in Aedes aegypti (Diptera: Culicidae). J Med Entomol. 2018;7:e1002415. https://doi.org/10.1093/jme/tjy084.
Article Google Scholar
9.
Goindin D, Cannet A, Delannay C, Ramdini C, Gustave J, Atyame C, et al. Screening of natural Wolbachia infection in Aedes aegypti, Aedes taeniorhynchus and Culex quinquefasciatus from Guadeloupe (French West Indies). Acta Trop. 2018. https://doi.org/10.1016/j.actatropica.2018.06.011.
10.
Mitri C, Bischoff E, Belda Cuesta E, Volant S, Ghozlane A, Eiglmeier K, et al. Leucine-rich immune factor APL1 Is associated with specific modulation of enteric microbiome Taxa in the Asian malaria mosquito Anopheles stephensi. Front Microbiol. 2020;11:289. https://doi.org/10.3389/fmicb.2020.00306.
Article Google Scholar
11.
Short SM, Mongodin EF, MacLeod HJ, Talyuli OAC, Dimopoulos G. Amino acid metabolic signaling influences Aedes aegypti midgut microbiome variability. PLoS Negl Trop Dis. 2017;11:e0005677. https://doi.org/10.1371/journal.pntd.0005677.
CAS Article PubMed PubMed Central Google Scholar
12.
Pang X, Xiao X, Liu Y, Zhang R, Liu J, Liu Q, et al. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat Microbiol. 2016;1:16023. https://doi.org/10.1038/nmicrobiol.2016.23.
CAS Article PubMed PubMed Central Google Scholar
13.
Xiao X, Yang L, Pang X, Zhang R, Zhu Y, Wang P, et al. A Mesh-Duox pathway regulates homeostasis in the insect gut. Nat Microbiol. 2017;2:17020. https://doi.org/10.1038/nmicrobiol.2017.20.
Article PubMed PubMed Central Google Scholar
14.
Zhao B, Lucas KJ, Saha TT, Ha J, Ling L, Kokoza VA, et al. MicroRNA-275 targets sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA) to control key functions in the mosquito gut. PLoS Genet. 2017;13:e1006943–19. https://doi.org/10.1371/journal.pgen.1006943.
Article PubMed PubMed Central Google Scholar
15.
Dennison NJ, Saraiva RG, Cirimotich CM, Mlambo G, Mongodin EF, Dimopoulos G. Functional genomic analyses of Enterobacter, Anopheles and Plasmodium reciprocal interactions that impact vector competence. Malar J. 2016;15:425. https://doi.org/10.1186/s12936-016-1468-2.
Article PubMed PubMed Central Google Scholar
16.
Hegde S, Nilyanimit P, Kozlova E, Anderson ER, Narra HP, Sahni SK, et al. CRISPR/Cas9-mediated gene deletion of the ompA gene in symbiotic Cedecea neteri impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes. PLoS Negl Trop Dis. 2019;13:e0007883. https://doi.org/10.1371/journal.pntd.0007883.
CAS Article PubMed PubMed Central Google Scholar
17.
Ramirez JL, Short SM, Bahia AC, Saraiva RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398. https://doi.org/10.1371/journal.ppat.1004398.
Article PubMed PubMed Central Google Scholar
18.
Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci USA. 2014;111:12498–503. https://doi.org/10.1073/pnas.1408888111.
CAS Article PubMed Google Scholar
19.
Hegde S, Rasgon JL, Hughes GL. The microbiome modulates arbovirus transmissionin mosquitoes. Curr Opin Virol. 2015;15:97–102. https://doi.org/10.1016/j.coviro.2015.08.011.
CAS Article PubMed PubMed Central Google Scholar
20.
Dennison NJ, Jupatanakul N, Dimopoulos G. The mosquito microbiota influences vector competence for human pathogens. Curr Opin Insect Sci. 2014;3:6–13. https://doi.org/10.1016/j.cois.2014.07.004.
Article PubMed PubMed Central Google Scholar
21.
Wong AC-N, Wang Q-P, Morimoto J, Senior AM, Lihoreau M, Neely GG, et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in drosophila. Curr Biol. 2017;27:2397–.e4. https://doi.org/10.1016/j.cub.2017.07.022.
CAS Article PubMed Google Scholar
22.
Fischer CN, Trautman EP, Crawford JM, Stabb E, Handelsman J, Broderick NA. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. eLife. 2017;6:e18855. https://doi.org/10.7554/eLife.18855.001.
Article PubMed PubMed Central Google Scholar
23.
Saldana MA, Hegde S, Hughes GL. Microbial control of arthropod-borne disease. Mem Inst Oswaldo Cruz Fundação Oswaldo Cruz. 2017;112:81–93. https://doi.org/10.1590/0074-02760160373.
CAS Article Google Scholar
24.
Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S. Mosquito microbiota and implications for disease control. Trends Parasitol. 2020;36:98–111. https://doi.org/10.1016/j.pt.2019.12.001.
Article PubMed Google Scholar
25.
Briones-Roblero CI, Hernandez-Garcia JA, Gonzalez-Escobedo R, Soto-Robles LV, Rivera-Orduna FN, Zuniga G. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS ONE. 2017;12:e0175470. https://doi.org/10.1371/journal.pone.0175470.
Article PubMed PubMed Central Google Scholar
26.
Medina F, Li H, Vinson SB, Coates CJ. Genetic transformation of midgut bacteria from the red imported fire ant (Solenopsis invicta). Curr Microbiol. 2009;58:478–82.
CAS Article Google Scholar
27.
Muhammad A, Fang Y, Hou Y, Shi Z. The Gut Entomotype of Red Palm Weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and their effect on host nutrition metabolism. Front Microbiol. 2017;8:2291. https://doi.org/10.3389/fmicb.2017.02291.
Article PubMed PubMed Central Google Scholar
28.
Renoz F, Noel C, Errachid A, Foray V, Hance T. Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process. PLoS ONE. 2015;10:e0122099.
Article Google Scholar
29.
Wang A, Yao Z, Zheng W, Zhang H. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS ONE. 2014;9:e106988. https://doi.org/10.1371/journal.pone.0106988.
Article PubMed PubMed Central Google Scholar
30.
Lin X-L, Pan Q-J, Tian H-G, Douglas AE, Liu T-X. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods. Insect Sci. 2015;22:375–85. https://doi.org/10.1111/1744-7917.12079
CAS Article PubMed Google Scholar
31.
Gumiel M, da Mota FF, Rizzo V, de S, Sarquis O, de Castro DP, et al. Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasit Vectors. 2015;8:245. https://doi.org/10.1186/s13071-015-0836-z.
Article PubMed PubMed Central Google Scholar
32.
Gupta AK, Rastogi G, Nayduch D, Sawant SS, Bhonde RR, Shouche YS. Molecular phylogenetic profiling of gut-associated bacteria in larvae and adults of flesh flies. Med Vet Entomol. 2014;28:345–54. https://doi.org/10.1111/mve.12054.
CAS Article PubMed Google Scholar
33.
da Mota FF, Marinho LP, Moreira CJ, de C, Lima MM, Mello CB, et al. Cultivation-independent methods reveal differences among bacterial gut microbiota in triatomine vectors of Chagas disease. PLoS Negl Trop Dis. 2012;6:e1631. https://doi.org/10.1371/journal.pntd.0001631.
Article PubMed PubMed Central Google Scholar
34.
Kelly PH, Bahr SM, Serafim TD, Ajami NJ, Petrosino JF, Meneses C, et al. The gut microbiome of the vector Lutzomyia longipalpisIs essential for survival of Leishmania infantum. MBio. 2017;8:e01121–16. https://doi.org/10.1128/mBio.01121-16.
CAS Article PubMed PubMed Central Google Scholar
35.
Vieira CS, Waniek PJ, Castro DP, Mattos DP, Moreira OC, Azambuja P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit Vectors. 2016;9:119. https://doi.org/10.1186/s13071-016-1398-4.
CAS Article PubMed PubMed Central Google Scholar
36.
Zink S, Van Slyke G, Palumbo M, Kramer L, Ciota A. Exposure to West Nile virus increases bacterial diversity and immune gene expression in Culex pipiens. Viruses. 2015;7:5619–31. https://doi.org/10.3390/v7102886.
CAS Article PubMed PubMed Central Google Scholar
37.
Thongsripong P, Chandler JA, Green AB, Kittayapong P, Wilcox BA, Kapan DD, et al. Mosquito vector‐associated microbiota: metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod‐borne diseases. Ecol Evolution. 2017;16:118. https://doi.org/10.1002/ece3.3676.
Article Google Scholar
38.
Seitz HM, Maier WA, Rottok M, Becker-Feldmann H. Concomitant infections of Anopheles stephensi with Plasmodium berghei and Serratia marcescens: additive detrimental effects. Zentralbl Bakteriol Mikrobiol Hyg A. 1987;266:155–66.
CAS PubMed Google Scholar
39.
Muturi EJ, Bara JJ, Rooney AP, Hansen AK. Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection. Mol Ecol. 2016;25:4075–90. https://doi.org/10.1111/mec.13741.
CAS Article PubMed Google Scholar
40.
Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, et al. Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep. 2019;9:12160–12. https://doi.org/10.1038/s41598-019-48414-8.
Article PubMed PubMed Central Google Scholar
41.
Dickson LB, Jiolle D, Minard G, Moltini-Conclois I, Volant S, Ghozlane A, et al. Carryover effects of larval exposure to different environmental bacteria drive adult trait variation in a mosquito vector. Sci Adv. 2017;3:e1700585. https://doi.org/10.1126/sciadv.1700585.
Article PubMed PubMed Central Google Scholar
42.
Zouache K, Raharimalala FN, Raquin V, Tran-Van V, Raveloson LHR, Ravelonandro P, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol. 2010. https://doi.org/10.1111/j.1574-6941.2010.01012.x.
43.
Dickson LB, Ghozlane A, Volant S, Bouchier C, Ma L, Vega-Rua A, et al. Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome. Parasit Vectors. 2018;3:e1700585. https://doi.org/10.1101/200659.
Article Google Scholar
44.
David MR, Santos LMBD, Vicente ACP, Maciel-de-Freitas R. Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Mem Inst Oswaldo Cruz. 2016;111:577–87. https://doi.org/10.1590/0074-02760160238.
Article PubMed PubMed Central Google Scholar
45.
de O, Gaio A, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, et al. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae) (L.). Parasit Vectors. 2011;4:105. https://doi.org/10.1186/1756-3305-4-105.
Article Google Scholar
46.
Gusmão DS, Santos AV, Marini DC, Russo E, de S, Peixoto AMD, et al. First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): new perspectives for an insect-bacteria association. Mem Inst Oswaldo Cruz. 2007;102:919–24.
Article Google Scholar
47.
Gusmão DS, Santos AV, Marini DC, Bacci M, Berbert-Molina MA, Lemos FJA. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop. 2010;115:275–81. https://doi.org/10.1016/j.actatropica.2010.04.011.
Article PubMed Google Scholar
48.
Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23:2727–39. https://doi.org/10.1111/mec.12771.
CAS Article PubMed PubMed Central Google Scholar
49.
Kozlova EV, Khajanchi BK, Sha J, Chopra AK. Quorum sensing and c-di-GMP-dependent alterations in gene transcripts and virulence-associated phenotypes in a clinical isolate of Aeromonas hydrophila. Micro Pathog. 2011;50:213–23. https://doi.org/10.1016/j.micpath.2011.01.007.
CAS Article Google Scholar
50.
Rose WA, McGowin CL, Spagnuolo RA, Eaves-Pyles TD, Popov VL, Pyles RB. Commensal bacteria modulate innate immune responses of vaginal epithelial cell multilayer cultures. PLoS ONE 2012;7:e32728. https://doi.org/10.1371/journal.pone.0032728.
CAS Article PubMed PubMed Central Google Scholar
51.
Kozlova EV, Khajanchi BK, Popov VL, Wen J, Chopra AK. Impact of QseBC system in c-di-GMP-dependent quorum sensing regulatory network in a clinical isolate SSU of Aeromonas hydrophila. Micro Pathog. 2012;53:115–24. https://doi.org/10.1016/j.micpath.2012.05.008.
CAS Article Google Scholar
52.
Williams RP, Gott CL. Inhibition by streptomycin of the biosynthesis of prodigiosin. Biochem Biophys Res Commun. 1964;16:47–52. https://doi.org/10.1016/0006-291X(64)90209-8.
CAS Article PubMed Google Scholar
53.
Jeffries CL, Lawrence GG, Golovko G, Kristan M, Orsborne J, Spence K, et al. Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa. Wellcome Open Res. 2018;3:113. https://doi.org/10.12688/wellcomeopenres.14765.2.
Article PubMed PubMed Central Google Scholar
54.
Tourlousse DM, Yoshiike S, Ohashi A, Matsukura S, Noda N, Sekiguchi Y. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 2017;45:e23. https://doi.org/10.1093/nar/gkw984.
Article PubMed Google Scholar
55.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2012;41:e1.
Article Google Scholar
56.
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. https://doi.org/10.1093/nar/gks1219.
CAS Article PubMed PubMed Central Google Scholar
57.
Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:1–7. https://doi.org/10.3402/mehd.v26.27663.
Article Google Scholar
58.
Zhu H, Sun S-J, Dang H-Y. PCR detection of Serratia spp. using primers targeting pfs and luxS genes involved in AI-2-dependent quorum sensing. Curr Microbiol. 2008;57:326–30. https://doi.org/10.1007/s00284-008-9197-6.
CAS Article PubMed Google Scholar
59.
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595.
CAS Article PubMed PubMed Central Google Scholar
60.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. https://doi.org/10.1093/bioinformatics/btp352
CAS Article PubMed PubMed Central Google Scholar
61.
Kinosita Y, Kikuchi Y, Mikami N, Nakane D, Nishizaka T. Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body. ISME J. 2018;12:838–48. https://doi.org/10.1038/s41396-017-0010-z.
Article PubMed Google Scholar
62.
Wiles TJ, Schlomann BH, Wall ES, Betancourt R, Parthasarathy R, Guillemin K. Swimming motility of a gut bacterial symbiont promotes resistance to intestinal expulsion and enhances inflammation. PLoS Biol. 2020;18:e3000661. https://doi.org/10.1371/journal.pbio.3000661.
CAS Article PubMed PubMed Central Google Scholar
63.
Bando H, Okado K, Guelbeogo WM, Badolo A, Aonuma H, Nelson B, et al. Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity. Sci Rep. 2013;3:1641–9. https://doi.org/10.1038/srep01641.
Article PubMed PubMed Central Google Scholar
64.
Abreo E, Altier N. Pangenome of Serratia marcescens strains from nosocomial and environmental origins reveals different populations and the links between them. Sci Rep. 2019;9:46–8. https://doi.org/10.1038/s41598-018-37118-0.
Article PubMed PubMed Central Google Scholar
65.
Chavda KD, Chen L, Fouts DE, Sutton G, Brinkac L, Jenkins SG, et al. Comprehensive genome analysis of carbapenemase-producing Enterobacter spp.: new insights into phylogeny, population structure, and resistance mechanisms. MBio. 2016;7. https://doi.org/10.1128/mBio.02093-16.
66.
Wyres KL, Lam MMC, Holt KE. Population genomics of Klebsiella pneumoniae. Nat Rev Micro. 2020;66:1–16. https://doi.org/10.1038/s41579-019-0315-1.
Article Google Scholar
67.
Pumpuni CB, Demaio J, Kent M, Davis JR, Beier JC. Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. Am J Epidemiol. 1996;54:214–8.
CAS Google Scholar
68.
Wang Y, Gilbreath TM III, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE. 2011;6:e24767. https://doi.org/10.1371/journal.pone.0024767.
CAS Article PubMed PubMed Central Google Scholar
69.
Wang S, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci USA. 2012;109:12734–9. https://doi.org/10.1073/pnas.1204158109.
CAS Article PubMed Google Scholar
70.
Bai L, Wang L, Vega-Rodriguez J, Wang G, Wang S. A Gut Symbiotic Bacterium Serratia marcescens renders mosquito resistance to plasmodium infection through activation of mosquito immune responses. Front Microbiol. 2019;10:1580. https://doi.org/10.3389/fmicb.2019.01580.
Article PubMed PubMed Central Google Scholar
71.
Muturi EJ, Dunlap C, Ramirez JL, Rooney AP, Kim C-H. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol Ecol. 2019;95. https://doi.org/10.1093/femsec/fiy213.
72.
Yao Z, Wang A, Li Y, Cai Z, Lemaitre B, Zhang H. The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis. ISME J. 2016;10:1037–50. https://doi.org/10.1038/ismej.2015.202.
CAS Article PubMed Google Scholar
73.
Andersen K, Kesper MS, Marschner JA, Konrad L, Ryu M, SK VR, et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD–related systemic inflammation. JASN. 2017;28:76–83. https://doi.org/10.1681/ASN.2015111285.
CAS Article PubMed Google Scholar
74.
Schaubeck M, Clavel T, Calasan J, Lagkouvardos I, Haange SB, Jehmlich N, et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut. 2016;65:225–37. https://doi.org/10.1136/gutjnl-2015-309333.
CAS Article PubMed Google Scholar
75.
Peng W, Huang J, Yang J, Zhang Z, Yu R, Fayyaz S, et al. Integrated 16S rRNA sequencing, metagenomics, and metabolomics to characterize gut microbial composition, function, and fecal metabolic phenotype in non-obese type 2 diabetic Goto-Kakizaki rats. Front Microbiol. 2019;10:3141. https://doi.org/10.3389/fmicb.2019.03141.
Article PubMed Google Scholar
76.
Li F, Wang P, Chen Z, Sui X, Xie X, Zhang J. Alteration of the fecal microbiota in North-Eastern Han Chinese population with sporadic Parkinson’s disease. Neurosci Lett. 2019;707:134297. https://doi.org/10.1016/j.neulet.2019.134297
CAS Article PubMed Google Scholar
77.
Hegde S, Voronin D, Casas-Sanchez A, Saldaña M, Acosta-Serrano A, Popov VL, et al. Gut-associated bacteria invade the midgut epithelium of Aedes aegypti and stimulate innate immunity and suppress Zika virus infection in cells. bioRxiv. 2019;37:866897. https://doi.org/10.1101/866897.
Article Google Scholar
78.
Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008;4:e1000098–49.
Article Google Scholar
79.
Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, Pascale JM, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis. 2012;6:e1561. https://doi.org/10.1371/journal.pntd.0001561.
Article PubMed PubMed Central Google Scholar
80.
Koosha M, Vatandoost H, Karimian F, Choubdar N, Abai MR, Oshaghi MA. Effect of Serratia AS1 (Enterobacteriaceae: Enterobacteriales) on the fitness of Culex pipiens (Diptera: Culicidae) for paratransgenic and RNAi approaches. J Med Entomol. 2019;56:553–9. https://doi.org/10.1093/jme/tjy183.
CAS Article PubMed Google Scholar
81.
Adair KL, Bost A, Bueno E, Kaunisto S, Kortet R, Peters-Schulze G, et al. Host determinants of among-species variation in microbiome composition in drosophilid flies. ISME J. 2020;14:217–29. https://doi.org/10.1038/s41396-019-0532-7.
Article PubMed Google Scholar
82.
Early AM, Shanmugarajah N, Buchon N, Clark AG. Drosophila genotype influences commensal bacterial levels. PLoS ONE. 2017;12:e0170332–15.
Article Google Scholar More