Congruent geographic variation in saccular otolith shape across multiple species of African cichlids
1.
Popper, A. N., Ramcharitar, J. & Campana, S. E. Why otoliths? Insights from inner ear physiology and fisheries biology. Mar. Freshw. Res. 56, 497–504. https://doi.org/10.1071/MF04267 (2005).
Article Google Scholar
2.
Starrs, D., Ebner, B. C. & Fulton, C. J. All in the ears: Unlocking the early life history biology and spatial ecology of fishes. Biol. Rev. 91, 86–105. https://doi.org/10.1111/brv.12162 (2016).
Article PubMed Google Scholar
3.
Schulz-Mirbach, T., Ladich, F., Plath, M. & Heß, M. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biol. Rev. https://doi.org/10.1111/brv.12463 (2018).
Article PubMed Google Scholar
4.
Campana, S. E. Photographic Atlas of Fish Otoliths of the Northwest Atlantic Ocean. Canadian Special Publication of Fisheries and Aquatic Sciences Vol. 133 (NRC Research Press, Ottawa, 2004).
Google Scholar
5.
Tuset, V. M., Lombarte, A., González, J. A., Pertusa, J. F. & Lorente, M. J. Comparative morphology of the sagittal otolith in Serranus spp. J. Fish Biol. 63, 1491–1504. https://doi.org/10.1111/j.1095-8649.2003.00262.x (2003).
Article Google Scholar
6.
Tuset, V. M. et al. Otolith patterns of rockfishes from the northeastern pacific. J. Morphol. 276, 458–469. https://doi.org/10.1002/jmor.20353 (2015).
Article PubMed Google Scholar
7.
Campana, S. E. & Casselman, J. M. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci. 50, 1062–1083. https://doi.org/10.1139/f93-123 (1993).
Article Google Scholar
8.
Bose, A. P. H., Adragna, J. B. & Balshine, S. Otolith morphology varies between populations, sexes and male alternative reproductive tactics in a vocal toadfish Porichthys notatus. J. Fish Biol. https://doi.org/10.1111/jfb.13187 (2016).
Article PubMed Google Scholar
9.
Mille, T., Mahe, K., Villanueva, M. C., De Pontual, H. & Ernande, B. Sagittal otolith morphogenesis asymmetry in marine fishes. J. Fish Biol. 87, 646–663. https://doi.org/10.1111/jfb.12746 (2015).
CAS Article PubMed Google Scholar
10.
Bose, A. P. H., Mccallum, E. S., Raymond, K., Marentette, J. R. & Balshine, S. Growth and otolith morphology vary with alternative reproductive tactics and contaminant exposure in the round goby Neogobius melanostomus. J. Fish Biol. 93, 674–684. https://doi.org/10.1111/jfb.13756 (2018).
Article PubMed Google Scholar
11.
Lombarte, A. & Castellón, A. Interspecific and intraspecific otolith variability in the genus Merluccius as determined by image analysis. Can. J. Zool. 69, 2442–2449. https://doi.org/10.1139/z91-343 (1991).
Article Google Scholar
12.
Vignon, M. & Morat, F. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 411, 231–241. https://doi.org/10.3354/meps08651 (2010).
ADS Article Google Scholar
13.
Gagliano, M. & McCormick, M. I. Feeding history influences otolith shape in tropical fish. Mar. Ecol. Prog. Ser. 278, 291–296. https://doi.org/10.3354/meps278291 (2004).
ADS Article Google Scholar
14.
Hoff, G. R. & Fuiman, L. A. Morphometry and composition of red drum otoliths: Changes associated with temperature, somatic growth rate, and age. Comp. Biochem. Physiol. 106, 209–219. https://doi.org/10.1016/0300-9629(93)90502-U (1993).
Article Google Scholar
15.
Tuset, V. M. et al. Otolith shape lends support to the sensory drive hypothesis in rockfishes. J. Evol. Biol. 29, 2083–2097. https://doi.org/10.1111/jeb.12932 (2016).
CAS Article PubMed Google Scholar
16.
Gauldie, R. W. Function, form and time-keeping properties of fish otoliths. Comp. Biochem. Physiol. 91, 395–402 (1988).
Article Google Scholar
17.
Popper, A. N., Fay, R. R., Platt, C. & Sand, O. Sound detection mechanisms and capabilities of teleost fishes. In Sensory Processing in Aquatic Environments (eds Collin, S. P. & Marshall, N. J.) 3–38 (Springer-Verlag, New York, 2003).
Google Scholar
18.
Krysl, P., Hawkins, A. D., Schilt, C. & Cranford, T. W. Angular oscillation of solid scatterers in response to progressive planar acoustic waves: Do fish otoliths rock?. PLoS ONE https://doi.org/10.1371/journal.pone.0042591 (2012).
Article PubMed PubMed Central Google Scholar
19.
Duftner, N. et al. Distinct population structure in a phenotypically homogeneous rock-dwelling cichlid fish from Lake Tanganyika. Mol. Ecol. 15, 2381–2395. https://doi.org/10.1111/j.1365-294X.2006.02949.x (2006).
CAS Article PubMed Google Scholar
20.
Koblmüller, S., Sefc, K. M., Duftner, N., Warum, M. & Sturmbauer, C. Genetic population structure as indirect measure of dispersal ability in a Lake Tanganyika cichlid. Genetica 130, 121–131. https://doi.org/10.1007/s10709-006-0027-0 (2007).
Article PubMed Google Scholar
21.
Sefc, K. M., Baric, S., Salzburger, W. & Sturmbauer, C. Species-specific population structure in rock-specialized sympatric cichlid species in Lake Tanganyika. East Afr. J. Mol. Evol. 64, 33–49. https://doi.org/10.1007/s00239-006-0011-4 (2007).
ADS CAS Article Google Scholar
22.
Wagner, C. E. & McCune, A. R. Contrasting patterns of spatial genetic structure in sympatric rock-dwelling cichlid fishes. Evolution 63, 1312–1326. https://doi.org/10.1111/j.1558-5646.2009.00612.x (2009).
Article PubMed Google Scholar
23.
Sefc, K. M. et al. Shifting barriers and phenotypic diversification by hybridisation. Ecol. Lett. 20, 651–662. https://doi.org/10.1111/ele.12766 (2017).
Article PubMed PubMed Central Google Scholar
24.
Koblmüller, S. et al. Separated by sand, fused by dropping water: Habitat barriers and fluctuating water levels steer the evolution of rock-dwelling cichlid populations in Lake Tanganyika. Mol. Ecol. 20, 2272–2290. https://doi.org/10.1111/j.1365-294X.2011.05088.x (2011).
Article PubMed Google Scholar
25.
Kohda, M. et al. Geographical colour variation in cichlid fishes at the southern end of Lake Tanganyika. Environ. Biol. Fishes 45, 237–248. https://doi.org/10.1007/BF00003091 (1996).
Article Google Scholar
26.
Widmer, L. et al. Point-Combination Transect (PCT): Incorporation of small underwater cameras to study fish communities. Methods Ecol. Evol. 10, 891–901. https://doi.org/10.1111/2041-210X.13163 (2019).
Article PubMed PubMed Central Google Scholar
27.
McGlue, M. M. et al. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. J. Paleolimnol. 40, 635–653. https://doi.org/10.1007/s10933-007-9187-x (2008).
ADS Article Google Scholar
28.
Duftner, N. et al. Parallel evolution of facial stripe patterns in the Neolamprologus brichardi/pulcher species complex endemic to Lake Tanganyika. Mol. Phylogenet. Evol. 45, 706–715. https://doi.org/10.1016/j.ympev.2007.08.001 (2007).
Article PubMed Google Scholar
29.
Sefc, K. M., Mattersdorfer, K., Hermann, C. M. & Koblmüller, S. Past lake shore dynamics explain present pattern of unidirectional introgression across a habitat barrier. Hydrobiologia 791, 69–82. https://doi.org/10.1007/s10750-016-2791-x (2017).
Article Google Scholar
30.
Winkelmann, K., Rüber, L. & Genner, M. J. Lake level fluctuations and divergence of cichlid fish ecomorphs in Lake Tanganyika. Hydrobiologia 791, 21–34. https://doi.org/10.1007/s10750-016-2839-y (2017).
Article Google Scholar
31.
Koblmüller, S. et al. Phylogeny and phylogeography of Altolamprologus: Ancient introgression and recent divergence in a rock-dwelling Lake Tanganyika cichlid genus. Hydrobiologia 791, 35–50. https://doi.org/10.1007/s10750-016-2896-2 (2017).
CAS Article Google Scholar
32.
Balshine, S. et al. Correlates of group size in a cooperatively breeding cichlid fish (Neolamprologus pulcher). Behav. Ecol. Sociobiol. 50, 134–140. https://doi.org/10.1007/s002650100343 (2001).
Article Google Scholar
33.
Heg, D., Bachar, Z. & Taborsky, M. Cooperative breeding and group structure in the Lake Tanganyika cichlid Neolamprologus savoryi. Ethology 111, 1017–1043. https://doi.org/10.1111/j.1439-0310.2005.01135.x (2005).
Article Google Scholar
34.
Bose, A. P. H., Zimmermann, H., Henshaw, J. M., Fritzsche, K. & Sefc, K. M. Brood—tending males in a biparental fish suffer high paternity losses but rarely cuckold. Mol. Ecol. 27, 4309–4321. https://doi.org/10.1111/mec.14857 (2018).
Article PubMed PubMed Central Google Scholar
35.
Schaedelin, F. C., Van Dongen, W. F. D. & Wagner, R. H. Mate choice and genetic monogamy in a biparental, colonial fish. Behav. Ecol. 26, 782–788. https://doi.org/10.1093/beheco/arv011 (2015).
Article PubMed PubMed Central Google Scholar
36.
Konings, A. Tanganyika Cichlids in Their Natural Habitat 4th edn. (Hollywood Import & Export Inc., Gainesville, 2019).
Google Scholar
37.
Ota, K., Hori, M. & Kohda, M. Testes investment along a vertical depth gradient in an herbivorous fish. Ethology 118, 683–693. https://doi.org/10.1111/j.1439-0310.2012.02056.x (2012).
Article Google Scholar
38.
Sturmbauer, C. et al. Abundance, distribution, and territory areas of rock-dwelling Lake Tanganyika cichlid fish species. Hydrobiologia 615, 57–68. https://doi.org/10.1007/978-1-4020-9582-5_5 (2008).
Article Google Scholar
39.
Heg, D., Brouwer, L., Bachar, Z. & Taborsky, M. Large group size yields group stability in the cooperatively breeding cichlid Neolamprologus pulcher. Behaviour 1, 1–27. https://doi.org/10.1163/156853905774831891 (2005).
Article Google Scholar
40.
Spinks, R. K., Muschick, M., Salzburger, W. & Gante, H. F. Singing above the chorus: Cooperative Princess cichlid fish (Neolamprologus pulcher) has high pitch. Hydrobiologia 791, 115–125. https://doi.org/10.1007/s10750-016-2921-5 (2016).
Article Google Scholar
41.
Bigirimana, C. Neolamprologus pulcher. The IUCN Red List of Threatened Species 2006: e.T60604A12382292. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60604A12382292.en (2006). Accessed 8 March 2020.
42.
Bigirimana, C. Neolamprologus caudopunctatus. The IUCN Red List of Threatened Species 2006: e.T60591A12373751. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60591A12373751.en (2006). Accessed 8 March 2020.
43.
Bigirimana, C. Neolamprologus savoryi. The IUCN Red List of Threatened Species 2006: e.T60605A12382585. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60605A12382585.en (2006). Accessed 8 March 2020.
44.
Bigirimana, C. Neolamprologus moorii. The IUCN Red List of Threatened Species 2006: e.T60613A12384127. https://doi.org/10.2305/IUCN.UK.2006.RLTS.T60613A12384127.en (2006). Accessed 8 March 2020.
45.
Iwata, H. & Ukai, Y. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. J. Hered. 93, 384–385. https://doi.org/10.1093/jhered/93.5.384 (2002).
CAS Article PubMed Google Scholar
46.
Crampton, J. S. Elliptic Fourier shape analysis of fossil bivalves: Some practical considerations. Lethaia 28, 179–186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x (1995).
Article Google Scholar
47.
Jackson, D. A. Stopping rules in principal component analysis: A comparison of heuristical and statistical approaches. Ecology 74, 2204–2214. https://doi.org/10.2307/1939574 (1993).
Article Google Scholar
48.
Bolles, K. L. & Begg, G. A. Distinction between silver hake (Merluccius bilinearis) stocks in US waters of the northwest Atlantic based on whole otolith morphometrics. Fish. Bull. 98, 451–462 (2000).
Google Scholar
49.
Lenth, R. emmeans: Estimated marginal means, aka least-squares means. R package version 1.4.4. https://CRAN.R-project.org/package=emmeans (2020).
50.
Richlen, M. L. & Barber, P. H. A technique for the rapid extraction of microalgal DNA from single live and preserved cells. Mol. Ecol. Notes 5, 688–691. https://doi.org/10.1111/j.1471-8286.2005.01032.x (2005).
CAS Article Google Scholar
51.
McCusker, M. R. & Bentzen, P. Positive relationships between genetic diversity and abundance in fishes. Mol. Ecol. 19, 4852–4862. https://doi.org/10.1111/j.1365-294X.2010.04822.x (2010).
Article PubMed Google Scholar
52.
Karl, S. A., Toonen, R. J., Grant, W. S. & Bowen, B. W. Common misconceptions in molecular ecology: Echoes of the modern synthesis. Mol. Ecol. 21, 4171–4189. https://doi.org/10.1111/j.1365-294X.2012.05576.x (2012).
CAS Article PubMed Google Scholar
53.
Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50. https://doi.org/10.1177/117693430500100003 (2005).
CAS Article Google Scholar
54.
Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 497–591 (1992).
Google Scholar
55.
Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).
Article Google Scholar
56.
Templeton, A. R., Crandall, K. A. & Sing, C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633 (1992).
CAS PubMed PubMed Central Google Scholar
57.
Sefc, K. M., Payne, R. B. & Sorenson, M. D. Genetic differentiation after founder events: An evaluation of FST estimators with empirical and simulated data. Evol. Ecol. Res. 9, 21–39 (2007).
Google Scholar
58.
Sturmbauer, C., Salzburger, W., Duftner, N., Schelly, R. & Koblmüller, S. Evolutionary history of the Lake Tanganyika cichlid tribe Lamprologini (Teleostei: Perciformes) derived from mitochondrial and nuclear DNA data. Mol. Phylogenet. Evol. 57, 266–284 (2010).
CAS Article Google Scholar
59.
Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A. & Liu, J. A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika 78, 685–709. https://doi.org/10.1007/s11336-013-9328-2 (2013).
MathSciNet Article PubMed MATH Google Scholar
60.
Solt, F. & Hu, Y. dotwhisker: Dot-and-whisker plots of regression results. R package version 0.5.0. https://CRAN.R-project.org/package=dotwhisker (2018).
61.
Wilson, R. R. Jr. Depth-related changes in sagitta morphology in six Macrourid fishes of the Pacific and Atlantic Oceans. Copeia 4, 1011–1017. https://doi.org/10.2307/1445256 (1985).
Article Google Scholar
62.
Lombarte, A. & Lleonart, J. Otolith size changes related with body growth, habitat depth and temperature. Environ. Biol. Fishes 37, 297–306. https://doi.org/10.1007/BF00004637 (1993).
Article Google Scholar
63.
Mérigot, B., Letourneur, Y. & Lecomte-Finiger, R. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Mar. Biol. 151, 997–1008. https://doi.org/10.1007/s00227-006-0549-0 (2007).
Article Google Scholar
64.
Hüssy, K. Otolith shape in juvenile cod (Gadus morhua): Ontogenetic and environmental effects. J. Exp. Mar. Bio. Ecol. 364, 35–41. https://doi.org/10.1016/j.jembe.2008.06.026 (2008).
Article Google Scholar
65.
Volpedo, A. V. & Fuchs, D. V. Ecomorphological patterns of the lapilli of Paranoplatense Siluriforms (South America). Fish. Res. 102, 160–165. https://doi.org/10.1016/j.fishres.2009.11.007 (2010).
Article Google Scholar
66.
Vignon, M. Disentangling and quantifying sources of otolith shape variation across multiple scales using a new hierarchical partitioning approach. Mar. Ecol. Prog. Ser. 534, 163–177. https://doi.org/10.3354/meps11376 (2015).
ADS Article Google Scholar
67.
Sand, O. & Michelsen, A. Vibration measurements of the perch saccular otolith. J. Comp. Physiol. A 123, 85–89. https://doi.org/10.1007/BF00657346 (1978).
Article Google Scholar
68.
Schulz-Mirbach, T. et al. In-situ visualization of sound-induced otolith motion using hard X-ray phase contrast imaging. Sci. Rep. 8, 1–12. https://doi.org/10.1038/s41598-018-21367-0 (2018).
CAS Article Google Scholar
69.
Castonguay, M., Simard, P. & Gagnon, P. Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination. Can. J. Biochem. Physiol. 48, 296–302. https://doi.org/10.1139/f91-041 (1991).
Article Google Scholar
70.
Friedland, K. D. & Reddin, D. G. Use of otolith morphology in stock discriminations of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 51, 91–98. https://doi.org/10.1139/f94-011 (1994).
Article Google Scholar
71.
Turan, C. Otolith shape and meristic analysis of herring (Clupea harengus) in the North-East Atlantic. Arch. Fish. Mar. Res. 48, 283–295 (2000).
Google Scholar
72.
Reichenbacher, B., Feulner, G. R. & Schulz-Mirbach, T. Geographic variation in otolith morphology among freshwater populations of Aphanius dispar (Teleostei, Cyprinodontiformes) from the southeastern Arabian Peninsula. J. Morphol. 484, 469–484. https://doi.org/10.1002/jmor.10702 (2009).
Article Google Scholar
73.
Libungan, L. A., Slotte, A., Huseb, Å & Godiksen, J. A. Latitudinal gradient in otolith shape among local populations of Atlantic herring (Clupea harengus L.) in Norway. PLoS ONE 10, e0130847. https://doi.org/10.1371/journal.pone.0130847 (2015).
CAS Article PubMed PubMed Central Google Scholar
74.
Hedrick, P. W. Sex: Differences in mutation, recombination, selection, gene flow, and genetic drift. Evolution 61, 2750–2771. https://doi.org/10.1111/j.1558-5646.2007.00250.x (2007).
Article PubMed Google Scholar
75.
Cardinale, M., Doering-Arjes, P., Kastowsky, M. & Mosegaard, H. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Can. J. Fish. Aquat. Sci. 61, 158–167. https://doi.org/10.1139/f03-151 (2004).
Article Google Scholar
76.
Parmentier, E., Boistel, R., Bahri, M. A., Plenevaux, A. & Schwarzhans, W. Sexual dimorphism in the sonic system and otolith morphology of Neobythites gilli (Ophidiiformes). J. Morphol. 4, 1–7. https://doi.org/10.1111/jzo.12561 (2018).
Article Google Scholar
77.
Sopinka, N. M. et al. Liver size reveals social status in the African cichlid Neolamprologus pulcher. J. Fish Biol. 75, 1–16. https://doi.org/10.1111/j.1095-8649.2009.02234.x (2009).
CAS Article PubMed Google Scholar
78.
Irisarri, I. et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat. Commun. 9, 1–12. https://doi.org/10.1038/s41467-018-05479-9 (2018).
CAS Article Google Scholar
79.
Breheny, P. & Burchett, W. Visualization of regression models using visreg. R. J. 9, 56–71 (2017).
Article Google Scholar More