Rapid fragmentation of microplastics by the freshwater amphipod Gammarus duebeni (Lillj.)
1.
Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).
ADS CAS PubMed Google Scholar
2.
Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E. & Svendsen, C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci. Total Environ. 586, 127–141 (2017).
ADS CAS PubMed Google Scholar
3.
Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62, 2588–2597 (2011).
CAS PubMed Google Scholar
4.
Ballent, A., Corcoran, P. L., Madden, O., Helm, P. A. & Longstaffe, F. J. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Mar. Pollut. Bull. 110, 383–395 (2016).
CAS PubMed Google Scholar
5.
Wagner, M. & Lambert, S. Freshwater Microplastics (Springer International Publishing, Cham, 2018).
Google Scholar
6.
Lechner, A. et al. The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe’s second largest river. Environ. Pollut. 188, 177–181 (2014).
CAS PubMed PubMed Central Google Scholar
7.
Miller, R. Z., Watts, A. J. R., Winslow, B. O., Galloway, T. S. & Barrows, A. P. W. Mountains to the sea: river study of plastic and non-plastic microfiber pollution in the northeast USA. Mar. Pollut. Bull. 124, 245–251 (2017).
CAS PubMed Google Scholar
8.
Mani, T., Hauk, A., Walter, U. & Burkhardt-Holm, P. Microplastics profile along the Rhine River. Sci. Rep. 5, 1–7 (2015).
Google Scholar
9.
Castañeda, R. A., Avlijas, S., Simard, M. A. & Ricciardi, A. Microplastic pollution in St. Lawrence River sediments. Can. J. Fish. Aquat. Sci. 71, 1767–1771 (2014).
Google Scholar
10.
Pomeroy, C., Haggart, O., Vermaire, J. C., Herczegh, S. M. & Murphy, M. Microplastic abundance and distribution in the open water and sediment of the Ottawa River, Canada, and its tributaries. Facets 2, 301–314 (2017).
Google Scholar
11.
Klein, S., Worch, E. & Knepper, T. P. Occurrence and spatial distribution of microplastics in river shore sediments of the rhine-main area in Germany. Environ. Sci. Technol. 49, 6070–6076 (2015).
ADS CAS PubMed Google Scholar
12.
Hurley, R., Woodward, J. & Rothwell, J. J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 11, 251–257 (2018).
ADS CAS Google Scholar
13.
Tan, Z. et al. Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171, 248–258 (2016).
PubMed Google Scholar
14.
Leslie, H. A., Brandsma, S. H., van Velzen, M. J. M. & Vethaak, A. D. Microplastics en route: field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 101, 133–142 (2017).
CAS PubMed Google Scholar
15.
Mani, T. et al. Repeated detection of polystyrene microbeads in the lower Rhine River. Environ. Pollut. 245, 634–641 (2019).
CAS PubMed Google Scholar
16.
Wilson, S. et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar. Pollut. Bull. 77, 177–182 (2013).
PubMed Google Scholar
17.
McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J. & Kelly, J. J. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ. Sci. Technol. 48, 11863–11871 (2014).
ADS CAS PubMed Google Scholar
18.
Windsor, F. M., Tilley, R. M., Tyler, C. R. & Ormerod, S. J. Microplastic ingestion by riverine macroinvertebrates. Sci. Total Environ. 646, 68–74 (2019).
ADS CAS PubMed Google Scholar
19.
Sanchez, W., Bender, C. & Porcher, J. M. Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: preliminary study and first evidence. Environ. Res. 128, 98–100 (2014).
CAS PubMed Google Scholar
20.
Kuśmierek, N. & Popiołek, M. Microplastics in freshwater fish from Central European lowland river (Widawa R, SW Poland). Environ. Sci. Pollut. Res. 27, 11438–11442 (2020).
Google Scholar
21.
Wagner, M. et al. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ. Sci. Eur. 26, 58 (2014).
Google Scholar
22.
Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. 7, 17006 (2017).
ADS PubMed PubMed Central Google Scholar
23.
Aljaibachi, R. & Callaghan, A. Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability. PeerJ 6, e4601 (2018).
PubMed PubMed Central Google Scholar
24.
Bruck, S. & Ford, A. T. Chronic ingestion of polystyrene microparticles in low doses has no effect on food consumption and growth to the intertidal amphipod Echinogammarus marinus?. Environ. Pollut. 233, 1125–1130 (2018).
CAS PubMed Google Scholar
25.
Mateos-Cárdenas, A. et al. Polyethylene microplastics adhere to Lemna minor (L.), yet have no effects on plant growth or feeding by Gammarus duebeni (Lillj.). Sci. Total Environ. 689, 413–421 (2019).
ADS PubMed Google Scholar
26.
Rehse, S., Kloas, W. & Zar, C. Short-term exposure with high concentrations of pristine microplastic particles leads to immobilisation of Daphnia magna. Chemosphere 153, 91–99 (2016).
ADS CAS PubMed Google Scholar
27.
Jemec, A., Horvat, P., Kunej, U., Bele, M. & Kr, A. Uptake and effects of microplastic textile fibers on freshwater crustacean Daphnia magna. Environ. Pollut. 219, 201–209 (2016).
CAS PubMed Google Scholar
28.
Weber, A., Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. PET microplastics do not negatively affect the survival, development, metabolism and feeding activity of the freshwater invertebrate Gammarus pulex. Environ. Pollut. 234, 181–189 (2018).
CAS PubMed Google Scholar
29.
Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).
ADS CAS PubMed Google Scholar
30.
Geyer, R., Jambeck, J. & Law, K. Production, use, and fate of all plastics ever made. Sci. Adv. 3, 25–29 (2017).
Google Scholar
31.
Van Sebille, E. et al. A global inventory of small floating plastic debris. Environ. Res. Lett. 10, 124006 (2015).
ADS Google Scholar
32.
Dawson, A. L. et al. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 9, 1–8 (2018).
Google Scholar
33.
Jang, M., Shim, W. J., Han, G. M., Song, Y. K. & Hong, S. H. Formation of microplastics by polychaetes (Marphysa sanguinea) inhabiting expanded polystyrene marine debris. Mar. Pollut. Bull. 131, 365–369 (2018).
CAS PubMed Google Scholar
34.
Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).
ADS CAS PubMed Google Scholar
35.
Consolandi, G., Ford, A. T. & Bloor, M. C. Feeding behavioural studies with freshwater Gammarus spp.: the importance of a standardised methodology. In Reviews of Environmental Contamination and Toxicology 1–41 (2019).
36.
Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 178, 483–492 (2013).
CAS PubMed Google Scholar
37.
Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. H. M. & Koelmans, A. A. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ. Sci. Technol. 52, 2278–2286 (2018).
ADS CAS PubMed PubMed Central Google Scholar
38.
Blarer, P. & Burkhardt-holm, P. Microplastics affect assimilation efficiency in the freshwater amphipod Gammarus fossarum. Environ. Sci. Pollut. Res. 23, 23522–23532 (2016).
CAS Google Scholar
39.
Straub, S., Hirsch, P. E. & Burkhardt-Holm, P. Biodegradable and petroleum-based microplastics do not differ in their ingestion and excretion but in their biological effects in a freshwater invertebrate Gammarus fossarum. Int. J. Environ. Res. Public Health 14, 774 (2017).
PubMed Central Google Scholar
40.
Catarino, A. I., Frutos, A. & Henry, T. B. Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Sci. Total Environ. 670, 915–920 (2019).
ADS CAS PubMed Google Scholar
41.
Schür, C. et al. When fluorescence is not a particle: the tissue translocation of microplastics in daphnia magna seems an artifact. Environ. Toxicol. Chem. 38, 1495–1503 (2019).
PubMed Google Scholar
42.
Luo, H. et al. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Sci. Total Environ. 678, 1–9 (2019).
ADS CAS PubMed Google Scholar
43.
Gewert, B., Plassmann, M. M. & Macleod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17, 1513–1521 (2015).
CAS PubMed Google Scholar
44.
ter Halle, A. et al. Understanding the fragmentation pattern of marine plastic debris. Environ. Sci. Technol. 50, 5668–5675 (2016).
ADS PubMed Google Scholar
45.
Weinstein, J. E., Crocker, B. K. & Gray, A. D. From macroplastic to microplastic: degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environ. Toxicol. Chem. 35, 1632–1640 (2016).
CAS PubMed Google Scholar
46.
Zhu, L., Zhao, S., Bittar, T. B., Stubbins, A. & Li, D. Photochemical dissolution of buoyant microplastics to dissolved organic carbon: Rates and microbial impacts. J. Hazard. Mater. 383, 121065 (2020).
CAS PubMed Google Scholar
47.
Song, Y. K. et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 51, 4368–4376 (2017).
ADS CAS PubMed Google Scholar
48.
Hakkarainen, M. & Albertsson, A. C. Environmental degradation of polyethylene. Adv. Polym. Sci. 169, 177–199 (2004).
CAS Google Scholar
49.
Andrady, A. L., Pegram, J. E. & Song, Y. Studies on enhanced degradable plastics. II. Weathering of enhanced photodegradable polyethylenes under marine and freshwater floating exposure. J. Environ. Polym. Degrad. 1, 117–126 (1993).
CAS Google Scholar
50.
Porter, A., Smith, K. E. & Lewis, C. The sea urchin Paracentrotus lividus as a bioeroder of plastic. Sci. Total Environ. 693, 133621 (2019).
ADS CAS PubMed Google Scholar
51.
Cau, A. et al. Benthic crustacean digestion can modulate environmental fate of microplastics in the deep sea. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.9b07705 (2020).
Article PubMed Google Scholar
52.
Macneil, C., Dick, J. T. A. & Elwood, R. W. The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biol. Rev. 72, 349–364 (1997).
Google Scholar
53.
Willoughby, L. G. & Sutcliffe, D. W. Experiments on feeding and growth of the amphipod Gammarus pulex (L.) related to its distribution in the River Duddon. Freshw. Biol. 6, 577–586 (1976).
CAS Google Scholar
54.
Agrawal, V. P. Feeding appendages and the digestive system of Gammarus pulex. Acta Zool. 46, 67–81 (1965).
CAS Google Scholar
55.
Watling, L. Functional morphology of the amphipod mandible. J. Nat. Hist. 27, 837–849 (1993).
Google Scholar
56.
Steele, D. H. & Steele, V. J. Biting mechanism of the amphipod anonyx (Crustacea: Amphipoda: Lysianassoidea). J. Nat. Hist. 27, 851–860 (1993).
Google Scholar
57.
Mayer, G., Maier, G., Maas, A. & Waloszek, D. Mouthpart morphology of Gammarus roeselii compared to a successful invader, Dikerogammarus villosus (Amphipoda). J. Crustac. Biol. 29, 161–174 (2009).
Google Scholar
58.
Mekhanikova, I. V. Morphology of mandible and lateralia in six endemic amphipods (Amphipoda, Gammaridea) from Lake Baikal, in relation to feeding. Crustaceana 83, 865–887 (2010).
Google Scholar
59.
Cassone, B. J., Grove, H. C., Elebute, O., Villanueva, S. M. P. & LeMoine, C. M. R. Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proc. R. Soc. B Biol. Sci. 287, 20200112 (2020).
Google Scholar
60.
Besseling, E. et al. Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ. Sci. Technol. 48, 12336–12343 (2014).
ADS CAS PubMed PubMed Central Google Scholar
61.
Bhattacharya, P., Lin, S., Turner, J. P. & Ke, P. C. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. J. Phys. Chem. 114, 16556–16561 (2010).
CAS Google Scholar
62.
Sendra, M., Staf, E., Pilar, M. & Moreno-Garrido, I. Are the primary characteristics of polystyrene nanoplastics responsible for toxicity and ad/absorption in the marine diatom Phaeodactylum tricornutum. Environ. Pollut. 249, 610–619 (2019).
CAS PubMed Google Scholar
63.
van Weert, S., Redondo-Hasselerharm, P. E., Diepens, N. J. & Koelmans, A. A. Effects of nanoplastics and microplastics on the growth of sediment-rooted macrophytes. Sci. Total Environ. 654, 1040–1047 (2019).
ADS PubMed Google Scholar
64.
Lian, J. et al. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). J. Hazard. Mater. 385, 121620 (2020).
PubMed Google Scholar
65.
Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P. & Vijver, M. G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226, 774–781 (2019).
ADS CAS PubMed Google Scholar
66.
Cui, R., Kim, S. W. & An, Y. J. Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Sci. Rep. 7, 1–10 (2017).
Google Scholar
67.
Rist, S., Baun, A., Almeda, R. & Hartmann, N. B. Ingestion and effects of micro- and nanoplastics in blue mussel (Mytilus edulis) larvae. Mar. Pollut. Bull. 140, 423–430 (2019).
CAS PubMed Google Scholar
68.
Hardesty, B. D. et al. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment. Front. Mar. Sci. 4, 1–9 (2017).
Google Scholar
69.
Kalčíková, G., Alič, B., Skalar, T., Bundschuh, M. & Gotvajn, A. Ž. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater. Chemosphere 188, 25–31 (2017).
ADS PubMed Google Scholar
70.
Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar. Pollut. Bull. 58, 1225–1228 (2009).
CAS PubMed Google Scholar
71.
Schmitz, E. H. & Scherrey, P. M. Digestive anatomy of Hyalella azteca (Crustacea, Amphipoda). J. Morphol. 100, 91–100 (1983).
Google Scholar
72.
Monk, D. C. The digestion of cellulose and other dietary components, and pH of the gut in the amphipod Gammarus pulex (L.). Freshw. Biol. 7, 431–440 (1977).
CAS Google Scholar More
