More stories

  • in

    Application of uniform design to evaluate the different conditions on the growth of algae Prymnesium parvum

    Overview of the study areaThe experimental algae P. parvum was collected from the fishponds in Dawukou, Ningxia, China. Algal water samples were filtered by medium size filter paper and centrifuged, and cultured with F/2 culture medium in the following environmental conditions for 5 days; light intensity of 5000 lx, light/dark ratio of 12 h: 12 h, water temperature of 18.5 ± 0.5 ℃, pH of 8.5 ± 0.1 and salinity of 1.2 ± 0.1 mg/l20,21. The plate separation method was used to separate and purify the cultured algae22. After microscopy, the colony of pure algal cells were transferred to different volumes of triangular glass bottles which contains sterilized F/2 medium for expansion culture. Algae P. parvum propagates vegetatively by cell division, the cell density of algae increases exponentially during the process of propagation thus requires more space. To accommodate this increasing space requirement, different sizes of the triangular glass bottles were used as 50 ml, 250 ml and 10 l. The expansion cultures were maintained in the environmental conditions similar to the initial culture. The algal cells were used for the experiment when they reach the logarithmic growth stage (the logarithmic growth stage was reached in 10 days).Data collection and experimentationThe water sample from the 10 L expansion culture of P. parvum was collected. The initial nutrient concentrations and environmental factors were determined using appropriate methods and equipment in the laboratory. The initial nutrient concentrations and environmental conditions of the algae culture used in this experiment is presented in Table 1.Table 1 Initial nutrient concentrations and environmental conditions of algae culture used in the experiment.Full size tableExperimental factors and their levels for each nutrient concentrations and environmental factors were designed based on the above reference as shown in Table 2. We have designed eight levels for environmental factors (i.e., water temperature, pH and salinity) and ten levels for nutrient concentrations (i.e., nitrogen, phosphorous, silicon and iron).

    1.

    Evaluation of the effects of environmental factors on the growth of P. parvum

    Table 2 Experimental factors and their levels designed for the experiment.Full size tableTo study the effects of environmental factors on the growth of P. parvum, water temperature, pH and salinity were used as the experimental factors by adopting the uniform design23,24,25 of three factors and eight levels as shown in Table 3.Table 3 Combination of environmental factors used for the different levels in the uniform design.Full size tableA 250 ml triangular glass bottle was used to implement each level of the above experiment with three replicates for each level (total of 24 bottles). The algae culture was allowed to grow in F/2 culture medium in the nutrient solution of 100 ml with an inoculation ratio of 1:10 (V/V). These bottles were kept in the light intensity of 5000 lx with light/dark ratio of 12 h: 12 h, while maintaining all other growth conditions to meet the experimental design requirements. The nutrient concentrations of N, P, Si and Fe were maintained at the level of initial concentrations (Table 1). Inoculated algae were cultured in a shaker for 10 days until it reaches its logarithmic growth stage and the growth rate was quantified.

    2.

    Evaluation of the effects of nutrient concentrations on the growth of P. parvum

    To study the effects of nutrient concentrations on the growth of P. parvum, nitrogen, phosphorus, silicon and iron were used as experimental factors by adopting the uniform design5,26 of four factors and ten levels as shown in Table 4. The culture medium was prepared with sodium nitrate (NaNO3) as the nitrogen source, monosodium phosphate (NaH2PO4) as the phosphorus source, sodium metasilicate (Na2SiO3) as the silicon source, and ferric citrate (FeC6H5O7) as a source iron to obtain the appropriate concentrations of nitrogen, phosphorous, silicon and iron as designed for this experiment (Table 2).Table 4 Combination of nutrient concentration used for the different levels in the uniform design.Full size tableA 250 ml triangular glass bottle was used to implement each level of the above experiment with three replicates for each level (total of 30 bottles). The algae culture was allowed to grow in F/2 culture medium with a volume of 100 ml and an inoculation ratio of 1:10 (V/V). These bottles were kept in the light intensity of 5000 lx, light/dark ratio of 12 h: 12 h, water temperature of 18.5 ± 0.5 ℃, pH of 8.5 ± 0.1 and salinity of 1.2 ± 0.1 mg/l. Inoculated algae were cultured in a shaker for 10 days until it reaches its logarithmic growth stage and the biomass density was quantified.

    3.

    Determination of the growth rate of P. parvum

    The algal cell density of the culture of each experimental level was measured using a 0.1 ml count plate under an optical microscope (Leica biological microscope DM1000, Leica Corporation, Oskar-Barnack-Straße, Germany) both at the beginning of the experiment and following 10 days of incubation period as the growth of the algae can reach its logarithmic growth stage at 10 days. Based on the algal cell density measurement, biomass density was calculated using the following formula (Eq. 1) described by Wei and Zhang;$$ Growth;rate;left( K right) = 3.322 times left( {log (N_{t} ) – log left( {N_{0} } right)} right)/left( {t – t_{0} } right) $$
    (1)
    where t is the duration of the experiment in days, N0 is the initial cell density (cell/ml) at the beginning of the experiment, and Nt is the cell density (cell/ml) at the end of day t of the experiment.Data analysis and results

    1.

    Establishment of the regression model between environmental factors and the growth rate

    The growth rate of P. parvum under different levels of environmental factors are shown in Table 5, and the growth curve with time is shown in Fig. 1.Table 5 Growth rates of Prymnesium parvum under the different levels of environmental factors in the uniform design.Full size tableFigure 1The growth curve of P. parvum with time under different environmental factor levels.Full size imageIn multiple quadratic stepwise regression analysis, water temperature (X1), pH (X2) and salinity (X3) were taken as independent variables, and the growth rate (Y) was taken as the dependent variable. From this analysis a quadratic polynomial regression equation (Eq. 2) was developed as follows:$$ Y = – 11.0371 + 0.0682X_{1} + 2.5559X_{2} + 0.7953X_{3} – 0.0019X_{1} ^{2} – 0.1523{text{ }}X_{2} ^{2} – 0.3223{text{ }}X_{3} ^{2} $$
    (2)
    Correlation coefficient (R) of the above equation was 0.9994 and probability (P) of the regression equation was 0.025 (p  X3  > X1. Thus, the contribution of pH  > salinity  > water temperature on the growth rate of P. parvum.

    2.

    Evaluation of the effect of environmental factors on the growth rate of P. parvum

    The environmental conditions that would result in the maximum growth rate of P. parvum were determined by optimizing the regression equation (Eq. 2). The following simple regression models (Eqs. 3–5) of multiple quadratic stepwise regression analyses reveal the relationships between individual environmental factors and the growth rate. These models were obtained by dimensionality reduction analysis in which the other factors were maintained at optimal levels.$$ X_{{1WT}} :;Yleft( {X_{1} } right) = 0.1768 + 0.0682X_{1} – 0.0019X_{1} ^{2} $$
    (3)
    $$ X_{{2pH}} :;Yleft( {X_{2} } right) = – 9.9345 + 2.5559X_{2} – 0.1523{text{ }}X_{2} ^{2} $$
    (4)
    $$ X_{{3salinity}} :;Yleft( {X_{3} } right) = 0.2982 + 0.7953X_{3} – 0.3223{text{ }}X_{3} ^{2} $$
    (5)
    The influence curves of each environmental factor on growth rate of P. parvum are shown in Fig. 2. The behavior of the curves is similar where the growth rate increases initially, then reaches a theoretical maximum and finally declines with increasing level of each environmental factor. Accordingly, P. parvum reaches its theoretical maximum growth rate (0.789) when the water temperature, pH and salinity is 18.11 ℃, 8.39 and 1.23‰, respectively. Therefore, Fig. 2 can be considered as the growth model of P. parvum as affected each of the respective environmental factors.

    3.

    Establishment of regression model between nutrient concentrations and the growth rate

    Figure 2The growth rate of P. parvum as affected by the water temperature (a), pH (b) and salinity (c).Full size imageThe growth rates of P. parvum under the different levels of nutrient concentrations are shown in Table 7, and the growth curve with time is shown in Fig. 3.Table 7 Growth rate of Prymnesium parvum under the different levels of nutrient concentration in the uniform design.Full size tableFigure 3The growth curve of P. parvum with time under different nutrient concentrations factor levels.Full size imageA quadratic polynomial regression equation (Eq. 6) was generated using N (Xi), P (Xii), Si (Xiii) and Fe (Xiv) as independent variables and the growth rate (Y′) as the dependent variable by using multiple quadratic stepwise regression analysis as follows:$$ Y^{prime } = – 1.856686 + 1.371680X_{i} + 0.390361X_{{ii}} + 0.150656X_{{iii}} + 0.587990X_{{iv}} – {text{ }}0.2011178X_{i} ^{2} – 0.186640{text{ }}X_{{ii}} ^{2} – 0.108764{text{ }}X_{{iii}} ^{2} – 0.550523{text{ }}X_{{iv}} ^{2} $$
    (6)
    Correlation coefficient (R) of the above equation was 0.9994 and probability (P) of the regression equation was 0.035 ( Xii  > Xiv  > Xiii. Therefore, the contribution of nitrogen  > phosphorous  > iron  > silicon for the growth of P. parvum.

    4.

    Evaluation of the effect of nutrient concentrations on the growth rate of P. parvum

    Multifactor square stepwise regression model was used to analyze the influence of individual nutrient concentration following the dimensionality reduction. To evaluate the influence of individual nutrient concentration on the growth rate, following sub-models (Eqs. 7–10) were developed by fixing other factors at the optimal level.$$ X_{i} nitrogen:Y^{prime } (X_{i} ) = – 1.4432 + 1.3717X_{i} – 0.2012X_{i} ^{2} $$
    (7)
    $$ X_{{ii}} phosphorus:Y^{prime } (X_{{ii}} ) = 0.6916 + 0.3904X_{{ii}} – 0.1866X_{{ii}} ^{2} $$
    (8)
    $$ X_{{iii}} silicon:Y^{prime } (X_{{iii}} ) = 0.8436 + 0.1507X_{{iii}} – 0.1088X_{{iii}} ^{2} $$
    (9)
    $$ X_{{iv}} iron:Y^{prime } (X_{{iv}} ) = 0.7388 + 0.5880X_{{iv}} – 0.5505X_{{iv}} ^{2} $$
    (10)
    The influence curves of each nutrients on growth rate of P. parvum are shown in Fig. 4. The behavior of the curves shows an initial increase of the growth rate, then the growth rate reaches a theoretical maximum and finally declines with increasing level of concentrations of each nutrient. Accordingly, P. parvum reaches its theoretical maximum growth rate (0.896) when the concentration of nitrogen, phosphorous, silicon and iron is 3.41, 1.05, 0.69, 0.53 mgl−1, respectively. Therefore, Fig. 4 may be considered as the growth model of P. parvum as affected each of the respective nutrients.Figure 4The growth rate of P. parvum as affected by nitrogen (a), phosphorus (b), silicon (c) and iron (d).Full size image More

  • in

    African forest elephant movements depend on time scale and individual behavior

    1.Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 2478 (2015).Article 
    CAS 

    Google Scholar 
    2.Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278 (2010).CAS 
    Article 

    Google Scholar 
    3.Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).PubMed 
    Article 
    ADS 

    Google Scholar 
    4.Morales, J. M. et al. Building the bridge between animal movement and population dynamics. Philos. Trans. R. Soc. B Biol. Sci. 365, 2289–2301 (2010).Article 

    Google Scholar 
    5.Earl, J. E. & Zollner, P. A. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling. J. Anim. Ecol. 86, 987–997 (2017).PubMed 
    Article 

    Google Scholar 
    6.Bastille-Rousseau, G. & Wittemyer, G. Unveiling multidimensional heterogeneity in resource selection and movement tactics of animal. Ecol. Lett. https://doi.org/10.1111/ele.13327 (2019).Article 
    PubMed 

    Google Scholar 
    7.Hertel, A. G. et al. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).Article 

    Google Scholar 
    8.Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).Article 

    Google Scholar 
    9.Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity?. Trends Ecol. Evol. 23, 361–368 (2008).PubMed 
    Article 

    Google Scholar 
    10.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 

    Google Scholar 
    11.Wolf, M. & Weissing, F. J. Animal personalities: Consequences for ecology and evolution. Trends Ecol. Evol. 27, 452–461 (2012).PubMed 
    Article 

    Google Scholar 
    12.Swan, G. J. F., Redpath, S. M., Bearhop, S. & McDonald, R. A. Ecology of problem individuals and the efficacy of selective wildlife management. Trends Ecol. Evol. 32, 518–530 (2017).PubMed 
    Article 

    Google Scholar 
    13.Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies?. Biol. Conserv. 209, 34–44 (2017).Article 

    Google Scholar 
    14.Hertel, A. G. et al. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 1–18 (2020).Article 

    Google Scholar 
    15.Poulsen, J. R. et al. Ecological consequences of forest elephant declines for Afrotropical forests. Conserv. Biol. 32, 559–567 (2018).PubMed 
    Article 

    Google Scholar 
    16.Poulsen, J. R. et al. Poaching empties critical Central African wilderness of forest elephants. Curr. Biol. 27, R134–R135 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Maisels, F. et al. Devastating decline of forest elephants in Central Africa. PLoS ONE 8, e59469 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    18.Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 4, 1–13 (2016).
    Google Scholar 
    19.Holyoak, M., Casagrandi, R., Nathan, R., Revilla, E. & Spiegel, O. Trends and missing parts in the study of movement ecology. Proc. Natl. Acad. Sci. 105, 19060–19065 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    20.Carbone, C., Cowlishaw, G., Isaac, N. J. B. & Rowcliffe, J. M. How far do animals go? Determinants of day range in mammals. Am. Nat. 165, 290–297 (2005).PubMed 
    Article 

    Google Scholar 
    21.Powell, R. A. & Mitchell, M. S. What is a home range?. J. Mammal. 93, 948–958 (2012).Article 

    Google Scholar 
    22.Oliver, I., Beattie, A. J. & York, A. Spatial fidelity of plant, vertebrate, and invertebrate assemblages in multiple-use forest in Eastern Australia. Conserv. Biol. 12, 822–835 (1998).Article 

    Google Scholar 
    23.van Beest, F. M., Vander Wal, E., Stronen, A. V., Paquet, P. C. & Brook, R. K. Temporal variation in site fidelity: Scale-dependent effects of forage abundance and predation risk in a non-migratory large herbivore. Oecologia 52, 409–420 (2002).
    Google Scholar 
    24.Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    25.Ihwagi, F. W. et al. Night-day speed ratio of elephants as indicator of poaching levels. Ecol. Indic. 84, 38–44 (2018).Article 

    Google Scholar 
    26.Wrege, P. H., Rowland, E. D., Thompson, B. G. & Batruch, N. Use of acoustic tools to reveal otherwise cryptic responses of forest elephants to oil exploration. Conserv. Biol. 24, 1578–1585 (2010).PubMed 
    Article 

    Google Scholar 
    27.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301 (2017).Article 

    Google Scholar 
    28.Vanleeuwe, H., Gautier-Hion, A. & Cajani, S. Forest clearings and the conservation of elephants (Loxodonta africana cyclotis) in North East Congo Republic. Pachyderm 24, 46–52 (1997).
    Google Scholar 
    29.Mcclintock, B. T., Fisheries, A. & Michelot, T. momentuHMM: R package for generalized hidden Markov models of animal movement. Methods Ecol. Evol. 2018, 1518–1530 (2017).
    Google Scholar 
    30.Vogel, S. M. et al. Exploring movement decisions: Can Bayesian movement-state models explain crop consumption behaviour in elephants (Loxodonta africana)?. J. Anim. Ecol. 89, 1055–1068 (2020).PubMed 
    Article 

    Google Scholar 
    31.Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    32.Van Beest, F. M., Rivrud, I. M., Loe, L. E., Milner, J. M. & Mysterud, A. What determines variation in home range size across spatiotemporal scales in a large browsing herbivore?. J. Anim. Ecol. 80, 771–785 (2011).PubMed 
    Article 

    Google Scholar 
    33.Lindstedt, S. L. Home range, time, and body size in mammals. Ecology 67, 413–418 (1986).Article 

    Google Scholar 
    34.Mills, E. C. et al. Forest elephant movement and habitat use in a tropical forest-grassland mosaic in Gabon. PLoS One 13, e0199387 (2018).35.Bohrer, G., Beck, P. S. S. A., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation-driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 2 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Kolowski, J. M. et al. Movements of four forest elephants in an oil concession in Gabon, Central Africa. Afr. J. Ecol. 48, 1134–1138 (2010).Article 

    Google Scholar 
    37.Laurance, W. F. et al. Impacts of roads and hunting on central African rainforest mammals. Conserv. Biol. 20, 1251–1261 (2006).PubMed 
    Article 

    Google Scholar 
    38.Buij, R. et al. Patch-occupancy models indicate human activity as major determinant of forest elephant Loxodonta cyclotis seasonal distribution in an industrial corridor in Gabon. Biol. Conserv. 135, 189–201 (2007).Article 

    Google Scholar 
    39.Blake, S. et al. Roadless wilderness area determines forest elephant movements in the Congo Basin. PLoS ONE 3, e3546 (2008).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    40.Torney, C. J., Grant, J., Morrison, T. A., Couzin, I. D. & Levin, S. A. From single steps to mass migration: The problem of scale in the movement ecology of the serengeti wildebeest. Philos. Trans. R. Soc. B Biol. Sci. 373, 2 (2018).
    Google Scholar 
    41.Roberts, C. P., Cain, J. W. & Cox, R. D. Identifying ecologically relevant scales of habitat selection: Diel habitat selection in elk: Diel. Ecosphere 8, 2 (2017).Article 

    Google Scholar 
    42.Sannier, C., McRoberts, R. E., Fichet, L. V. & Makaga, E. M. K. Using the regression estimator with Landsat data to estimate proportion forest cover and net proportion deforestation in Gabon. Remote Sens. Environ. 151, 138–148 (2014).Article 
    ADS 

    Google Scholar 
    43.Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    44.Hoogenboom, I., Daan, S., Dallinga, J. H. & Schoenmakers, M. Seasonal change in the daily timing of behaviour of the common vole Microtus arvalis. Oecologia 61, 18–31. https://doi.org/10.1007/BF00379084(1984).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    45.Polansky, L., Kilian, W. & Wittemyer, G. Elucidating the significance of spatial memory on movement decisions by African savannah elephants using state–space models. Proc. R. Soc. B Biol. Sci. 282, 2 (2015).
    Google Scholar 
    46.Taylor, L. A. et al. Movement reveals reproductive tactics in male elephants. J. Anim. Ecol. 89, 57–67 (2020).PubMed 
    Article 

    Google Scholar 
    47.WCS, W. C. S.- & University, C. for I. E. S. I. N.-C.-C. Last of the Wild Project, Version 2, 2005 (LWP-2): Global Human Footprint Dataset (Geographic). (2005).48.Hadfield, J. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    49.R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. (2019).50.Gelman, A. & Hill, J. Data analysis using regression and multilevel/hierarchical models (Cambridge University Press, 2006).Book 

    Google Scholar 
    51.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    52.Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News https://doi.org/10.1016/s0306-4522(05)00880-8 (2006).Article 

    Google Scholar 
    53.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    54.Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Houslay, T. M., Vierbuchen, M., Grimmer, A. J., Young, A. J. & Wilson, A. J. Testing the stability of behavioural coping style across stress contexts in the Trinidadian guppy. Funct. Ecol. 32, 424–438 (2018).PubMed 
    Article 

    Google Scholar 
    56.Taylor, L. A. et al. Movement reveals reproductive tactics in male elephants. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13035 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    58.Yackulic, C. B., Strindberg, S., Maisels, F. & Blake, S. The spatial structure of hunter access determines the local abundance of forest elephants (Loxodonta africana cyclotis). Ecol. Appl. 21, 1296–1307 (2011).PubMed 
    Article 

    Google Scholar 
    59.Blake, S. et al. Fruit, minerals, and forest elephant trails: Do all roads lead to Rome?. Biotropica 36, 392 (2006).
    Google Scholar 
    60.Campos-Arceiz, A. & Blake, S. Megagardeners of the forest—the role of elephants in seed dispersal. Acta Oecol. 37, 542–553 (2011).Article 
    ADS 

    Google Scholar 
    61.Beirne, C. et al. Climatic and resource determinants of forest elephant movements. Front. Ecol. Evol. 8, 1–14 (2020).Article 

    Google Scholar 
    62.Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol. Conserv. 195, 60–72 (2016).Article 

    Google Scholar 
    63.Bush, E. R. et al. Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ 2020, 1–29 (2020).
    Google Scholar 
    64.Bush, E. R. et al. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 7791, 7791 (2020).
    Google Scholar 
    65.Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).
    Google Scholar 
    66.Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).Article 

    Google Scholar 
    67.McDougall, P. T., Réale, D., Sol, D. & Reader, S. M. Wildlife conservation and animal temperament: Causes and consequences of evolutionary change for captive, reintroduced, and wild populations. Anim. Conserv. 9, 39–48 (2006).Article 

    Google Scholar  More

  • in

    Functionalized MWCNTs-quartzite nanocomposite coated with Dacryodes edulis stem bark extract for the attenuation of hexavalent chromium

    1.Akpomie, K. G. & Dawodu, F. A. Montmorillonite-rice husk composite for heavy metal sequestration from binary aqua media: a novel adsorbent. Trans. R. Soc. South Africa 70(1), 83–88 (2015).Article 

    Google Scholar 
    2.Ali, A., Saeed, K. & Mabood, F. Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alex. Eng. J. 55(3), 2933–2942 (2016).Article 

    Google Scholar 
    3.Amaku, J. F., Ogundare, S. A., Akpomie, K. G., Ngwu, C. M. & Conradie, J. Sequestered uptake of chromium(VI) by Irvingia gabonensis stem bark extract anchored silica gel. Biomass Conver. Biorefinery 3, 19 (2021).
    Google Scholar 
    4.Malwade, K., Lataye, D., Mhaisalkar, V., Kurwadkar, S. & Ramirez, D. Adsorption of hexavalent chromium onto activated carbon derived from Leucaena leucocephala waste sawdust: kinetics, equilibrium and thermodynamics. Int. J. Environ. Sci. Technol. 13(9), 2107–2116 (2016).CAS 
    Article 

    Google Scholar 
    5.Belay, A. A. Impacts of chromium from tannery effluent and evaluation of alternative treatment options. J. Environ. Prot. 1(01), 53 (2010).CAS 
    Article 

    Google Scholar 
    6.Das, A. K. Micellar effect on the kinetics and mechanism of chromium(VI) oxidation of organic substrates. Coord. Chem. Rev. 248(1), 81–99 (2004).CAS 
    Article 

    Google Scholar 
    7.Paš, M., Milačič, R., Drašar, K., Pollak, N. & Raspor, P. Uptake of chromium (III) and chromium (VI) compounds in the yeast cell structure. Biometals 17(1), 25–33 (2004).PubMed 
    Article 

    Google Scholar 
    8.Medeiros, M. et al. Elevated levels of DNA–protein crosslinks and micronuclei in peripheral lymphocytes of tannery workers exposed to trivalent chromium. Mutagenesis 18(1), 19–24 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Tuzen, M.; Elik, A.; Altunay, N., Ultrasound-assisted supramolecular solvent dispersive liquid-liquid microextraction for preconcentration and determination of Cr (VI) in waters and total chromium in beverages and vegetables. J. Mol. Liq. 2021, 329, 115556.10.Gao, H. et al. Improved Adsorption Performance of α-Fe2O3 Modified with Carbon Spheres for Cr (VI) Removal from Aqueous Solution. J. Nanosci. Nanotechnol. 18(2), 1034–1042 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Amaku, J. F.; Ogundare, S. A.; Akpomie, K. G.; Conradie, J., Enhanced sequestration of chromium (VI) onto spent self-indicating silica gels coated with Harpephyllum caffrum stem bark extract. International Journal of Environmental Analytical Chemistry 2021, 1–17.12.Pagilla, K. R. & Canter, L. W. Laboratory studies on remediation of chromium-contaminated soils. J. Environ. Eng. 125(3), 243–248 (1999).CAS 
    Article 

    Google Scholar 
    13.Ali, J. et al. Separation and preconcentration of trivalent chromium in environmental waters by using deep eutectic solvent with ultrasound-assisted based dispersive liquid-liquid microextraction method. J. Mol. Liq. 291, 111299 (2019).CAS 
    Article 

    Google Scholar 
    14.Aksu, Z., Özer, D., Ekiz, H. I., Kutsal, T. & Çaglar, A. Investigation of biosorption of chromium (VI) on Cladophora crispata in two-staged batch reactor. Environ. Technol. 17(2), 215–220 (1996).CAS 
    Article 

    Google Scholar 
    15.Tiravanti, G., Petruzzelli, D. & Passino, R. Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Sci. Technol. 36(2), 197–207 (1997).CAS 
    Article 

    Google Scholar 
    16.Seaman, J. C., Bertsch, P. M. & Schwallie, L. In situ Cr (VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe (II) solutions. Environ. Sci. Technol. 33(6), 938–944 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Amaku, J. F. et al. Chrysophyllum albidum stem bark extract coated tillite adsorbent for the uptake of Cr (VI): thermodynamic, kinetic, isotherm, and reusability. Biomass Conver. Biorefinery 2, 1–13 (2021).
    Google Scholar 
    18.Lyubchik, S. I. et al. Kinetics and thermodynamics of the Cr (III) adsorption on the activated carbon from co-mingled wastes. Colloids Surf. A 242(1), 151–158 (2004).CAS 
    Article 

    Google Scholar 
    19.Demirbas, E., Kobya, M., Senturk, E. & Ozkan, T. Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water Sea 30(4), 533–539 (2004).CAS 

    Google Scholar 
    20.Oliveira, E., Montanher, S., Andrade, A., Nobrega, J. & Rollemberg, M. Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem. 40(11), 3485–3490 (2005).CAS 
    Article 

    Google Scholar 
    21.Samuel, M. S. et al. Efficient removal of Chromium (VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int. J. Biol. Macromol. 121, 285–292 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Samuel, M. S. et al. Preparation of graphene oxide/chitosan/ferrite nanocomposite for Chromium (VI) removal from aqueous solution. Int. J. Biol. Macromol. 119, 540–547 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Parlayici, S., Eskizeybek, V., Avcı, A. & Pehlivan, E. Removal of chromium (VI) using activated carbon-supported-functionalized carbon nanotubes. J. Nanostruct. Chem. 5(3), 255–263 (2015).CAS 
    Article 

    Google Scholar 
    24.Hu, J., Chen, C., Zhu, X. & Wang, X. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 162(2), 1542–1550 (2009).CAS 
    PubMed 

    Google Scholar 
    25.Amaku, J., Ogundare, S., Akpomie, K., Ngwu, C. & Conradie, J. Enhanced chromium (VI) removal by Anacardium occidentale stem bark extract-coated multiwalled carbon nanotubes. Int. J. Environ. Sci. Technol. 6, 1–14 (2021).
    Google Scholar 
    26.Amaku, J. F. et al. Thermodynamics, kinetics and isothermal studies of chromium (VI) biosorption onto Detarium senegalense stem bark extract coated shale and the regeneration potentials. Int. J. Phytoremed. 5, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    27.Tunali, S., Kiran, I. & Akar, T. Chromium (VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner. Eng. 18(7), 681–689 (2005).CAS 
    Article 

    Google Scholar 
    28.Módenes, A. N. et al. Study of the involved sorption mechanisms of Cr (VI) and Cr (III) species onto dried Salvinia auriculata biomass. Chemosphere 172, 373–383 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Hlihor, R. M., Figueiredo, H., Tavares, T. & Gavrilescu, M. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies. Process Saf. Environ. Prot. 108, 44–56 (2017).CAS 
    Article 

    Google Scholar 
    30.Ji, B. et al. Chromium (VI) removal from water using starch coated nanoscale zerovalent iron particles supported on activated carbon. Chem. Eng. Commun. 7, 1–8 (2018).
    Google Scholar 
    31.Zhu, Y. et al. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading. Biores. Technol. 261, 142–150 (2018).CAS 
    Article 

    Google Scholar 
    32.Zhang, S.-H. et al. Mechanism investigation of anoxic Cr (VI) removal by nano zero-valent iron based on XPS analysis in time scale. Chem. Eng. J. 335, 945–953 (2018).CAS 
    Article 

    Google Scholar 
    33.Amaku, J. F. et al. Adsorption of Cr (VI) onto Azadirachta indica stem bark extract modified dolerite composite adsorbent. Int. J. Environ. Anal. Chem. 7, 1–18 (2021).
    Google Scholar 
    34.Agarwal, G., Bhuptawat, H. K. & Chaudhari, S. Biosorption of aqueous chromium (VI) by Tamarindus indica seeds. Biores. Technol. 97(7), 949–956 (2006).CAS 
    Article 

    Google Scholar 
    35.Zhang, Y. et al. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr (VI) and Cu (II) from aqueous solution. Chem. Eng. J. 3, 79 (2018).
    Google Scholar 
    36.Moussout, H., Ahlafi, H., Aazza, M. & El Akili, C. Performances of local chitosan and its nanocomposite 5% Bentonite/Chitosan in the removal of chromium ions (Cr (VI)) from wastewater. Int. J. Biol. Macromol. 108, 1063–1073 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Moreira, A. L. D. S. L. et al. Bifunctionalized chitosan: a versatile adsorbent for removal of Cu (II) and Cr (VI) from aqueous solution. Carbohydr. Polym. 201, 218–227 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Lordi, V. & Yao, N. Molecular mechanics of binding in carbon-nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Met. 103(1–3), 2555–2558 (1999).CAS 
    Article 

    Google Scholar 
    40.Harris, P. J., Carbon nanotubes and related structures: new materials for the twenty-first century. AAPT: 2004.41.Stahl, H., Appenzeller, J., Martel, R., Avouris, P. & Lengeler, B. Intertube coupling in ropes of single-wall carbon nanotubes. Phys. Rev. Lett. 85(24), 5186 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Dai, H. et al. Electrical transport properties and field effect transistors of carbon nanotubes. NANO 1(01), 1–13 (2006).CAS 
    Article 

    Google Scholar 
    43.Rao, G. P., Lu, C. & Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58(1), 224–231 (2007).CAS 
    Article 

    Google Scholar 
    44.Vuković, G. D. et al. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem. Eng. J. 173(3), 855–865 (2011).Article 
    CAS 

    Google Scholar 
    45.Gao, Z., Bandosz, T. J., Zhao, Z., Han, M. & Qiu, J. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167(1–3), 357–365 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Xu, D., Tan, X., Chen, C. & Wang, X. Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 154(1–3), 407–416 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Kanthapazham, R., Ayyavu, C. & Mahendiradas, D. Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalin. Water Treat. 57(36), 16871–16885 (2016).CAS 

    Google Scholar 
    48.Wang, Y. et al. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products. Water Res. 92, 104–112 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    49.Patiño, Y. et al. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere 136, 174–180 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    50.Czech, B. & Oleszczuk, P. Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere 149, 272–278 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Howard, J. L. The quartzite problem revisited. J. Geol. 113(6), 707–713 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Olivier, T. T., Moïse, F., Jackson, S. A. & Francis, N. T. A review on traditional uses, phytochemical and pharmacological profiles, spiritual and economic values, and toxicity of Dacryodes Edulis (G. Don) HJ Lam. J. Drug Deliv. Therap. 6(5), 84–90 (2016).
    Google Scholar 
    53.Ogunmoyole, T., Kade, I., Johnson, O. & Makun, O. Effect of boiling on the phytochemical constituents and antioxidant properties of African pear Dacryodes edulis seeds in vitro. Afr. J. Biochem. Res. 6(8), 105–114 (2012).CAS 
    Article 

    Google Scholar 
    54.Omoregie, E. S. & Okugbo, O. T. In vitro antioxidant activity and phytochemical screening of methanol extracts of Ficus capensis and Dacryodes edulis leaves. Journal of Pharmacy & Bioresources 11(2), 66–75 (2014).Article 

    Google Scholar 
    55.Niazi, L., Lashanizadegan, A. & Sharififard, H. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J. Clean. Prod. 185, 554–561 (2018).CAS 
    Article 

    Google Scholar 
    56.Klimaviciute, R., Bendoraitiene, J., Rutkaite, R. & Zemaitaitis, A. Adsorption of hexavalent chromium on cationic cross-linked starches of different botanic origins. J. Hazard. Mater. 181(1–3), 624–632 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Mishra, S., Chakraborty, T. & Matsagar, V. Dynamic characterization of himalayan quartzite using SHPB. Procedia Eng. 191, 2–9 (2017).Article 

    Google Scholar 
    58.Torres, P., Manjate, R., Quaresma, S., Fernandes, H. & Ferreira, J. M. D. F. Development of ceramic floor tile compositions based on quartzite and granite sludges. J. Eur. Ceram. Soc. 27(16), 4649–4655 (2007).CAS 
    Article 

    Google Scholar 
    59.Amaral, P. M.; Fernandes, J. C.; Rosa, L. G. In A comparison between X-ray diffraction and petrography techniques used to determine the mineralogical composition of granite and comparable hard rocks, Materials science forum, Trans Tech Publ: 2006; pp 1628-1632.60.Hessel, C. M., Henderson, E. J. & Veinot, J. G. Hydrogen silsesquioxane: a molecular precursor for nanocrystalline Si−SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18(26), 6139–6146 (2006).CAS 
    Article 

    Google Scholar 
    61.Xie, P.-P. et al. Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 122, 392–398 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Wang, G. et al. Removal of Pb (II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arab. J. Chem. 11(1), 99–110 (2018).CAS 
    Article 

    Google Scholar 
    63.Brunauer, S. & Emmett, P. Chemisorptions of gases on iron synthetic ammonia catalysts1. J. Am. Chem. Soc. 62(7), 1732–1746 (1940).CAS 
    Article 

    Google Scholar 
    64.Xing, Z.; Hébert, R.; Beaucour, A.; Ledésert, B.; Noumowé, A.; Linder, N. In Influence of aggregate’s nature on their instability at elevated temperature, 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, RILEM Publications SARL: 2011; pp 149–156.65.Szabó, M. et al. Equilibria and kinetics of chromium (VI) speciation in aqueous solution–a comprehensive study from pH 2 to 11. Inorg. Chim. Acta 472, 295–301 (2018).Article 
    CAS 

    Google Scholar 
    66.Saygi, K. O., Tuzen, M., Soylak, M. & Elci, L. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. J. Hazard. Mater. 153(3), 1009–1014 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Shanmugalingam, A. & Murugesan, A. Removal of hexavalent chromium by adsorption on microwave assisted activated carbon prepared from stems of Leucas Aspera. Z. Phys. Chem. 232(4), 489–506 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Belachew, N. & Hinsene, H. Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Appl. Water Sci. 10(1), 38 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Gaikwad, M. S. & Balomajumder, C. Removal of Cr (VI) and fluoride by membrane capacitive deionization with nanoporous and microporous Limonia acidissima (wood apple) shell activated carbon electrode. Sep. Purif. Technol. 195, 305–313 (2018).CAS 
    Article 

    Google Scholar 
    70.Altundogan, H. S. Cr(VI) removal from aqueous solution by iron (III) hydroxide-loaded sugar beet pulp. Process Biochem. 40(3), 1443–1452 (2005).CAS 
    Article 

    Google Scholar 
    71.Demiral, H., Demiral, I., Tümsek, F. & Karabacakoğlu, B. Adsorption of chromium (VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chem. Eng. J. 144(2), 188–196 (2008).CAS 
    Article 

    Google Scholar 
    72.Ma, M., Lu, Y., Chen, R., Ma, L. & Wang, Y. Hexavalent chromium removal from water using heat-acid activated red mud. Open J. Appl. Sci. 4(05), 275 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    73.Aslani, H., Kosari, T. E., Naseri, S., Nabizadeh, R. & Khazaei, M. Hexavalent chromium removal from aqueous solution using functionalized chitosan as a novel nano-adsorbent: modeling and optimization, kinetic, isotherm, and thermodynamic studies, and toxicity testing. Environ. Sci. Pollut. Res. 2, 1–15 (2018).
    Google Scholar 
    74.Gao, H. et al. Characterization of Cr (VI) removal from aqueous solutions by a surplus agricultural waste—rice straw. J. Hazard. Mater. 150(2), 446–452 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Chagas, P. M. B. et al. Nanostructured oxide stabilized by chitosan: Hybrid composite as an adsorbent for the removal of chromium (VI). J. Environ. Chem. Eng. 6(1), 1008–1019 (2018).CAS 
    Article 

    Google Scholar 
    76.Qiu, J. et al. Adsorption of Cr (VI) using silica-based adsorbent prepared by radiation-induced grafting. J. Hazard. Mater. 166(1), 270–276 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Hamza, I. A. A., Martincigh, B. S., Ngila, J. C. & Nyamori, V. O. Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite. Phys. Chem. Earth Parts A/B/C 66, 157–166 (2013).ADS 
    Article 

    Google Scholar 
    78.Liu, Y. & Liu, Y.-J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 61(3), 229–242 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California

    Ethics and vertebrate animalsThe field surveys and collections were conducted on accessible public areas or private residential areas with property owners’ permission. The study did not involve human participants, or endangered or protected species. Laboratory mice were used as a blood source for mosquitoes. All experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California, Irvine (UCI) (IACUC protocol number: AUP-19-165). All methods were carried out in accordance with relevant IACUC guidelines and regulations.Study sites and mosquito larval habitat surveillanceThe study was carried out in Orange County, California, USA. Orange County is a highly urbanized county with an estimated population density of approximately 1470 people/km2 according to U.S. Census Bureau, an average annual low/high temperature range of 13–25 °C, 65% relative humidity, and annual precipitation of about 350 mm according to U.S. Climate Data. Annual rainfall was 261 mm, 311 mm, 198 mm and 475 mm for 2016, 2017, 2018 and 2019, respectively. A major drought event occurred in December 2017 and February 2018 when the total rainfall in the 3-month period was 20.6% of the 30-year average. Both Ae. aegypti and Ae. albopictus were discovered in the county in 20158. Culex quinquefasciatus is the most abundant mosquito in the county and breeds readily in a variety of residential, commercial and USDS water sources, and is the primary vector of West Nile virus in southern California18.Larval mosquito surveillance in Orange County was conducted from 2016 to 2019 by the Orange County Mosquito and Vector Control District (OCMVCD) through its routine mosquito surveillance and treatment program, following the recommendations of the California Department of Public Health and the Mosquito and Vector Control Association of California19. Briefly, OCMVCD staff conducted routine inspection for aquatic habitats in randomly selected public areas, and performed door-to-door mosquito larval and adult sampling on residential or commercial premises upon the request of the residents or business owners while distributing public education materials for vector control and personal protection. Arial photography was used to examine the presence of abandoned swimming pools in residential areas. In addition to surface aquatic habitats, subsurface habitats (e.g., catch basins, underground drains, manhole chambers, and public utility vaults) were examined for larval abundance of all mosquito species. In 2019, OCMVCD completed 5,622 mosquito service requests, and conducted 11,813 inspection and treatments on routine sites using a variety of public health-approved adulticides and larvicides. A total of 38,099 underground drains and catch basins and 6925 km of flood channels were treated. In addition, a total of 17,783 km of gutters and 3562 neglected swimming pools were inspected and treated. The larval distribution data reported here were based on this extensive field sampling effort20.Larval sampling used standard mosquito dippers or pipettes, and specialized modifications of these to sample hard to reach areas. Mosquito larvae from each source were collected, transferred into a uniquely-numbered vial with isopropyl alcohol (70%), and submitted to the laboratory for identification; if present, live pupae were collected and held in site-specific labelled rearing chambers (BioQuip Products, Inc., Rancho Dominguez, CA) until emergence. Third and fourth instar mosquito larvae (1–100, depending on sample size) and emerged adults were identified to species using a stereo microscope (40–50x) and morphological features described in taxonomic keys21,22. Results were uploaded to OCMVCD’s data management system, along with collection date, GPS location, and habitat type for each sample site. For this study, larval habitats were classified into six types: small container, underground system, ornamental water features, marsh, pools/spas, and creek (Table S1). The container classification included flowerpots/vases, saucers, tires, bowls, boxes, buckets, dishes, tree holes, etc. Underground storm drain system referred to larval habitats such as catch basins, manhole chambers, underground drains, and public utility vaults that were below the ground. Water feature included flood control channels, ponds, fountains, birdbaths, street gutters and small reservoirs, etc. Marsh included both fresh and salt water marshes.Mosquito strains and water source for laboratory studiesWe examined the effect of USDS water on oviposition substrate preference and larval development in microcosms in an insectary with climate control (27 ± 1 °C, 70 ± 10% relative humidity, and 12 h light/12 h dark photoperiod) at UCI. To minimize potential bias on behavior and ecology from mosquito colonization, this study did not use previously established laboratory mosquito colonies. Instead, we used Ae. aegypti and Ae. albopictus adults reared from field-collected eggs using ovicups in residential areas of Orange and Los Angeles Counties, California, respectively. Culex quinquefasciatus were also reared from eggs of field-collected, blood-engorged adult mosquitoes using gravid traps in Orange County23.All experiments reported here used two types of habitat water: (1) USDS water collected from seven manhole chambers or catch basins (33°47′01.9″N, 117°53′19.0″W, Orange City, manhole; 33°52′25.0″N, 117°57′02.6″W, Fullerton City, manhole; 33°44′44.4″N, 118°06′24.2″W, Seal Beach City, manhole; 33°55′38.9″N, 117°56′51.4″W, La Habra City, manhole; 33°52′48.9″N, 117°55′21.4″W, Fullerton City, catch basin; 33°54′35.2″N, 117°56′02.5″W, Fullerton City, catch basin; 33°52′25.0″N, 117°57′02.6″W, Fullerton City, catch basin); and 2) flowerpot water from vases of three cemeteries in Orange County (33°50′29.0″N, 117°53′57.9″W; 33°46′21.5″N, 117°50′35.8″W; 33°46′12.3″N, 117°50′21.4″W). Water (including sediments) from each breeding source was collected with mosquito dippers and mixed together by habitat type into 18.9 L (five-gallon) Nalgene™ containers. The containers were transported to the laboratory in shaded ice containers, and stored overnight in a refrigerator at 4 °C. The experiments described below were conducted on the field-collected water for the two habitat types. We selected flowerpot water as the comparison substrate because flowerpot containers showed the highest larval positivity rate in the study area.Oviposition preference testTo examine whether USDS water attracts or repels egg laying by Ae. aegypti and Ae. albopictus mosquitoes, a two-choice oviposition preference test was conducted. Briefly, this experiment used two ovicups placed within a mosquito cage (1 × 0.5 × 0.5 m3), one ovicup with 200 ml USDS water and another with 200 ml flowerpot water. Adult mosquitoes were bloodfed on mice; fully engorged females 3-days post-bloodfeeding were used for oviposition preference tests. Ten gravid Ae. aegypti females were released into a cage and allowed to lay eggs for three days, and the number of eggs in each ovicup were counted. Five replicates were used. The same experiment was conducted for Ae. albopictus.To evaluate whether the presence of Cx. quinquefasciatus larvae has any impact on the egg laying behavior of invasive Aedes mosquitoes, the two-choice oviposition preference test described above was used. One ovicup contained 200 ml USDS water and ten first-instar Cx. quinquefasciatus larvae, while the second ovicup contained 200 ml USDS water only. Ten gravid Ae. aegypti or Ae. albopictus females were released into a cage and allowed to lay eggs for three days. Five replicates were used. We also conducted this experiment using flowerpot water with the same design and same number of replicates to determine whether the impact of Cx. quinquefasciatus larvae on Aedes mosquito egg laying behavior was similar across different water substrate types.Egg hatchingTo investigate the effects of different habitat water sources on egg hatching, 50 Ae. aegypti or Ae. albopictus eggs on separate filter papers were introduced into ovicups with 200 ml USDS water or flowerpot water. Deoxygenized distilled water that we routinely use in laboratory mosquito colony maintenance was used as a positive control. The experiment was conducted in an insectary with climate control (27 ± 1 °C). The number of larvae hatched were counted daily for six days continuously. Five replicates were used.Larval survivorshipA life table study was conducted on Ae. aegypti and Ae. albopictus larvae to determine the effect of USDS water and flowerpot water on larval development and survivorship. Twenty-five newly hatched Ae. aegypti or Ae. albopictus larvae were introduced into a microcosm that contained 200 ml USDS or field flowerpot water. The number of dead and surviving larvae was recorded daily until they pupated. Pupae were counted, and removed to different paper cups for emergence to adults. Four replicates were used for each type of habitat water per species. We included Cx. quinquefasciatus in the larval life table study for method validation purposes because the larvae of this species were known to successfully develop into pupae and adults in USDS water in southern California10.Larval survivorship experiments were conducted in two different seasons. The first was in the summer (August–September) 2019 when the density of invasive Aedes species peaked19, and also insecticide runoff from mosquito and residential/agricultural pest control applications were at the highest levels in southern California24. The second was in the winter (December) 2019 when there was little insecticide treatment for mosquito and pest control. This design enabled us to examine seasonality in larval survivorship and the impact of environmental insecticide runoff in USDS water. To determine whether USDS water’s nutritional deficiency plays a major role in limiting Aedes larval development, we repeated the larval survival experiment by adding 0.1 g Tetramin Tropical Flakes, the standard larval mosquito diet in insectaries, to the microcosms every 2 days. The number of dead and surviving larvae, pupae, and emergent adults was recorded daily.Data analysisAll aquatic habitats that were positive or negative for the larvae of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus (the predominant species), were mapped using ArcGIS 10.7.1. The proportion of aquatic habitats positive for Ae. aegypti and Cx. quinquefasciatus was calculated for each habitat type from 2016 to 2019. To examine variation in Aedes and Culex larval positivity rate among different groups of larval habitats within the USDS, larval positivity rates for Ae. aegypti and Cx. quinquefasciatus were calculated for underground water retention vaults, underground catch basins/manholes, and underground pipelines/tunnels. The Chi-square test was used to examine the statistical significance. Culex quinquefasciatus was analyzed because it was the most common species, whereas Ae. albopictus was not included in the analysis due to insufficient number of Ae. albopictus positive habitats. To determine whether USDS water attracted or repelled oviposition of invasive Aedes mosquitoes, a pairwise t test was used to compare egg number in USDS water ovicups to flowerpot water ovicups for each Aedes species. Similarly, a pairwise t-test was used to test the effect of Cx. quinquefasciatus larvae on Aedes mosquito oviposition choice.To examine the effect of water sources on egg hatching, the t-test was used to analyze the egg hatching rate. The analysis of larval life table study data focused on pupation rates and larval-to-pupal development times. The pupation rate was calculated as the proportion of first-instar larvae that molted into pupae. The effect of water sources and larval food supplementation on pupation rate was analyzed using non-parametric Wilcoxon test. The t-test was used to analyze the duration of larval-to-pupal development. Kaplan–Meier survival analysis was used to determine the effects of food supplementation and water source on larval development for each species, and the log-rank test was conducted to determine their statistical significance. All statistical analyses were performed using JMP software (JMP 14.2, SAS Institute Inc.). More

  • in

    Aboveground plant-to-plant communication reduces root nodule symbiosis and soil nutrient concentrations

    1.Bezemer, T. M. & van Dam, N. M. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20, 617–624. https://doi.org/10.1016/j.tree.2005.08.006 (2005).Article 
    PubMed 

    Google Scholar 
    2.Kaplan, I. et al. Physiological integration of roots and shoots in plant defense strategies links above-and belowground herbivory. Ecol. Lett. 11, 841–851. https://doi.org/10.1111/j.1461-0248.2008.01200.x (2008).Article 
    PubMed 

    Google Scholar 
    3.Huang, W., Siemann, E., Carrillo, J. & Ding, J. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores. Ann. Bot. 115, 841–846. https://doi.org/10.1093/aob/mcv011 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Omer, A. D., Thaler, J. S., Granett, J. & Karban, R. Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J. Econ. Entomol. 93, 840–845. https://doi.org/10.1603/0022-0493-93.3.840 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Yamawo, A., Ohsaki, H. & Cahill, J. F. Jr. Damage to leaf veins suppresses root foraging precision. Am. J. Bot. 106, 1126–1130. https://doi.org/10.1002/ajb2.1338 (2019).Article 
    PubMed 

    Google Scholar 
    6.Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144. https://doi.org/10.1016/j.tree.2009.09.010 (2010).Article 
    PubMed 

    Google Scholar 
    7.Karban, R., Yang, L. J. & Edwards, K. F. Volatile communication between plants that affects herbivory: A meta-analysis. Ecol. Lett. 17, 44–52. https://doi.org/10.1111/ele.12205 (2014).Article 
    PubMed 

    Google Scholar 
    8.Yoneya, K. & Takabayashi, J. Plant-plant communication mediated by airborne signals: Ecological and plant physiological perspectives. Plant Biotechnol. 31, 409–416. https://doi.org/10.5511/plantbiotechnology.14.0827a (2014).CAS 
    Article 

    Google Scholar 
    9.Morrell, K. & Kessler, A. Plant communication in a widespread goldenrod: Keeping herbivores on the move. Funct. Ecol. 31, 1049–1061. https://doi.org/10.1111/1365-2435.12793 (2017).Article 

    Google Scholar 
    10.Arimura, G. et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512–515 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Shiojiri, K. et al. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones. Sci. Rep. 7, 1–8. https://doi.org/10.1038/srep41508 (2017).CAS 
    Article 

    Google Scholar 
    12.Karban, R., Shiojiri, K., Huntzinger, M. & McCall, A. C. Damage-induced resistance in sagebrush: Volatiles are key to intra- and interplant communication. Ecology 87, 922–930. https://doi.org/10.1890/0012-9658(2006)87[922:drisva]2.0.co;2 (2006).Article 
    PubMed 

    Google Scholar 
    13.Kikuta, Y. et al. Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant Cell Physiol. 52, 588–596. https://doi.org/10.1093/pcp/pcr017 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G. & Felton, G. W. Communication between plants: Induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125, 66–71. https://doi.org/10.1007/PL00008892 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Karban, R., Huntzinger, M. & McCall, A. C. The specificity of eavesdropping on sagebrush by other plants. Ecology 85, 1845–1852. https://doi.org/10.1890/03-0593 (2004).Article 

    Google Scholar 
    16.Shiojiri, K. et al. Exposure to artificially damaged goldenrod volatiles increases saponins in seeds of field-grown soybean plants. Phytochem. Lett. 36, 7–10. https://doi.org/10.1016/j.phytol.2020.01.014 (2020).CAS 
    Article 

    Google Scholar 
    17.Glinwood, R., Ninkovic, V. & Pettersson, J. Chemical interaction between undamaged plants—Effects on herbivores and natural enemies. Phytochemistry 72, 1683–1689. https://doi.org/10.1016/j.phytochem.2011.02.010 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Lokesh, R. A. V. I., Manasvi, V. & Lakshmi, B. P. Antibacterial and antioxidant activity of saponin from Abutilon indicum leaves. Asian J. Pharm. Clin. Res. 9, 344–347. https://doi.org/10.22159/ajpcr.2016.v9s3.15064 (2016).CAS 
    Article 

    Google Scholar 
    19.Raji, P., Samrot, A. V., Keerthana, D. & Karishma, S. Antibacterial activity of alkaloids, flavonoids, saponins and tannins mediated green synthesised silver nanoparticles against Pseudomonas aeruginosa and Bacillus subtilis. J. Cluster Sci. 30, 881–895. https://doi.org/10.1007/s10876-019-01547-2 (2019).CAS 
    Article 

    Google Scholar 
    20.Toth, R., Toth, D. & Starke, D. Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can. J. Bot. 68, 1039–1044. https://doi.org/10.1139/b90-131 (1990).Article 

    Google Scholar 
    21.Matyssek, R. et al. The plant’s capacity in regulating resource demand. Plant Biol. 7, 560–580. https://doi.org/10.1055/s-2005-872981 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Brundrett, M. C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x (2002).Article 
    PubMed 

    Google Scholar 
    23.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume-rhizobium mutualism. Nature 425, 78–81. https://doi.org/10.1038/nature01931 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Walters, D. R. Plant Defense: Warding Off Attack by Pathogens, Herbivores, and Parasitic Plants (Blackwell Publishing, 2011).
    Google Scholar 
    25.Szakiel, A., Pączkowski, C. & Henry, M. Influence of environmental biotic factors on the content of saponins in plants. Phytochem. Rev. 10, 493–502. https://doi.org/10.1007/s11101-010-9164-2 (2011).CAS 
    Article 

    Google Scholar 
    26.Singh, B. & Kaur, A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT 87, 93–101. https://doi.org/10.1016/j.lwt.2017.08.077 (2018).CAS 
    Article 

    Google Scholar 
    27.Barton, K. E. & Koricheva, J. The ontogeny of plant defense and herbivory: Characterizing general patterns using meta-analysis. Am. Nat. 175, 481–493. https://doi.org/10.1086/650722 (2010).Article 
    PubMed 

    Google Scholar 
    28.Feeny PP. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565–581 https://doi.org/10.2307/1934037 (1970).Article 

    Google Scholar 
    29.Dudt, J. F. & Shure, D. J. The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75, 86–98. https://doi.org/10.2307/1939385 (1994).Article 

    Google Scholar 
    30.Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Asian J. Pharm. Clin. Res. 33, 213–217. https://doi.org/10.1021/jf00062a013 (1985).CAS 
    Article 

    Google Scholar 
    31.Folin, O. & Denis, W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 22, 305–308 (1915).CAS 
    Article 

    Google Scholar 
    32.Huang, D., Ou, B. & Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856. https://doi.org/10.1021/jf030723c (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Mukai, T., Horie, H. & Goto, T. A simple method for determining saponin in tea seed. Chagyo Kenkyu Hokoku 75, 29–31 (1992) (Japanese with English abstract).CAS 
    Article 

    Google Scholar 
    34.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. A colorimetric method for the determination of sugars. Nature 168, 167–167 (1951).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356. https://doi.org/10.1021/ac60111a017 (1956).CAS 
    Article 

    Google Scholar 
    36.Harad, Y. Cation and anion exchange capacity of soil background and methods. 302 Jpn. J. Soil Scie. Plant Nutr. 55, 273–283. 303 (1984) (in Japanese).
    37.R Development Core Team. R A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    38.De Geyter, E., Lambert, E., Geelen, D. & Smagghe, G. Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol. 1, 96–105 (2007).
    Google Scholar 
    39.Pankhurst, C. E. & Sprent, J. I. Effects of water stress on the respiratory and nitrogen-fixing activity of soybean root nodules. J. Exp. Bot. 26, 287–304. https://doi.org/10.1093/jxb/26.2.287 (1975).CAS 
    Article 

    Google Scholar 
    40.Sparg, S., Light, M. E. & Van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219–243. https://doi.org/10.1016/j.jep.2004.05.016 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Saha, S., Walia, S., Kumar, J., Dhingra, S. & Parmar, B. S. Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi. J. Agric. Food Chem. 58, 434–440. https://doi.org/10.1021/jf902439m (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Hoagland, R. E., Zablotowicz, R. M. & Oleszek, W. A. Effects of alfalfa saponins on in vitro physiological activity of soil and rhizosphere bacteria. J. Crop. Prod. 4, 349–361. https://doi.org/10.1300/J144v04n02_16 (2001).CAS 
    Article 

    Google Scholar 
    43.Killeen, G. F. et al. Antimicrobial saponins of Yucca schidigera and the implications of their in vitro properties for their in vivo impact. J. Agric. Food Chem. 46, 3178–3186. https://doi.org/10.1021/jf970928j (1998).CAS 
    Article 

    Google Scholar 
    44.Sugiyama, A. The soybean rhizosphere: Metabolites, microbes, and beyond—A review. J. Adv. Res. 19, 67–73. https://doi.org/10.1016/j.jare.2019.03.005 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Lucas-Barbosa, D. Integration studies on plant-pollinator and plant–herbivore interactions. Trends Plant Sci. 21, 125–133. https://doi.org/10.1016/j.tplants.2015.10.013 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.De Deyn, G. B., Raaijmakers, C. E. & Van der Putten, W. H. Plant community development is affected by nutrients and soil biota. J. Ecol. 92(5), 824–834. https://doi.org/10.1111/j.0022-0477.2004.00924.x (2004).Article 

    Google Scholar 
    47.Knelman, J. E. et al. Nutrient addition dramatically accelerates microbial community succession. PLoS ONE 9(7), e102609. https://doi.org/10.1371/journal.pone.0102609 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Yoneya, K. & Takeshi, M. Co-evolution of foraging behaviour in herbivores and their natural enemies predicts multifunctionality of herbivore-induced plant volatiles. Funct. Ecol. 29, 451–461. https://doi.org/10.1111/1365-2435.12398 (2015).Article 

    Google Scholar 
    49.Karban, R. Plant communication increases heterogeneity in plant phenotypes and herbivore movement. Funct. Ecol. 31, 990–991. https://doi.org/10.1111/1365-2435.12806 (2017).Article 

    Google Scholar  More

  • in

    Microclimate feedbacks sustain power law clustering of encroaching coastal woody vegetation

    1.May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).Article 

    Google Scholar 
    2.Scheffer, M., Carpenter, S., Foley, J., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Archer, S., Schimel, D. S. & Holland, E. A. Mechanisms of shrubland expansion: land use, climate, or carbon dioxide. Clim. Change 29, 91–99 (1995).Article 

    Google Scholar 
    4.Maher, E. L. & Germino, M. J. Microsite variation among conifer species during seedling establishment at alpine treeline. Ecoscience 13, 334–341 (2006).Article 

    Google Scholar 
    5.Knapp, A. K. et al. Shrub encroachment in North American grasslands: shifts in growth form dominance alters control of ecosystem carbon inputs. Glob. Change Biol. 14, 615–623 (2008).Article 

    Google Scholar 
    6.McKee, K. L. & Rooth, J. E. Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Glob. Change Biol. 14, 971–984 (2008).Article 

    Google Scholar 
    7.Huang, H., Zinnert, J. C., Wood, L. K., Young, D. R. & D’Odorico, P. Non-linear shift from grassland to shrubland in temperate barrier islands. Ecology 99, 1671–1681 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Huang, H., Anderegg, L. D. L., Dawson, T. E., Mote, S. & D’Odorico, P. Critical transition to woody plant dominance through microclimate feedbacks in North American coastal ecosystems. Ecology 101, e03107 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Huenneke, L. F., Anderson, J. P., Remmenga, M. & Schlesinger, W. H. Desertification alters patterns of aboveground net primary production in Chihuahuan ecosystems. Glob. Change Biol. 8, 247–264 (2002).Article 

    Google Scholar 
    10.Li, J., Okin, G. S., Hartman, L. J. & Epstein, H. E. Quantitative assessment of wind erosion and soil nutrient loss in desert grasslands of southern New Mexico, USA. Biogeochemistry 85, 317–332 (2007).Article 

    Google Scholar 
    11.D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5, 520–530 (2012).Article 

    Google Scholar 
    12.Van Auken, O. Shrub invasions of North American semiarid grasslands. Annu. Rev. Ecol. Evol. Syst. 31, 197–215 (2000).Article 

    Google Scholar 
    13.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Gehrig-Fasel, J., Guisan, A. & Zimmermann, N. E. Tree line shifts in the Swiss Alps: climate change or land abandonment? J. Veg. Sci. 18, 571–582 (2007).Article 

    Google Scholar 
    15.Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl Acad. Sci. USA 111, 723–727 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.D’Odorico, P. et al. Vegetation–microclimate feedbacks in woodland–grassland ecotones. Glob. Ecol. Biogeogr. 22, 364–379 (2013).Article 

    Google Scholar 
    17.He, Y., D’Odorico, P. & De Wekker, S. F. The relative importance of climate change and shrub encroachment on nocturnal warming in the Southwestern United States. Int. J. Climatol. 35, 475–480 (2014).Article 

    Google Scholar 
    18.He, Y., D’Odorico, P., De Wekker, S. F., Fuentes, J. D. & Litvak, M. On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert. J. Geophys. Res. Atmos. 115, D21120 (2010).Article 

    Google Scholar 
    19.Ives, A. R. & Carpenter, S. R. Stability and diversity of ecosystems. Science 317, 58–62 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Sugihara, G. & May, R. M. Applications of fractals in ecology. Trends Ecol. Evol. 5, 79–86 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Rodriguez-Iturbe, I. & Rinaldo, A. Fractal River Basins: Chance and Self- Organization. (Cambridge University Press, New York, 1997).24.Majumder, S., Tamma, K., Ramaswamy, S. & Guttal, V. Inferring critical thresholds of ecosystem transitions from spatial data. Ecology 100, e02722 (2019).PubMed 
    Article 

    Google Scholar 
    25.Staver, A. C., Asner, G. P., Rodriguez-Iturbe, I., Levin, S. A. & Smit, I. Spatial patterning among savanna trees in high resolution, spatially extensive data. Proc. Natl Acad. Sci. USA 116, 10685 (2019).Article 
    CAS 

    Google Scholar 
    26.Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Kéfi, S. et al. Robust scaling in ecosystems and the meltdown of patch size distributions before extinction. Ecol. Lett. 14, 29–35 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Weissmann, H., Kent, R., Michael, Y. & Shnerb, N. M. Empirical analysis of vegetation dynamics and the possibility of a catastrophic desertification transition. PLoS ONE 12, e0189058 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Sankaran, S., Majumder, S., Viswanathan, A. & Guttal, V. Clustering and correlations: inferring resilience from spatial patterns in ecosystems. Methods Ecol. Evol. 10, 2079–2089 (2019).Article 

    Google Scholar 
    30.Zinnert, J. C. et al. Spatial–temporal dynamics in barrier island upland vegetation: the overlooked coastal landscape. Ecosystems 19, 685–697 (2016).CAS 
    Article 

    Google Scholar 
    31.Thompson, J. A., Zinnert, J. C. & Young, D. R. Immediate effects of microclimate modification enhance native shrub encroachment. Ecosphere 8, e01687 (2017).Article 

    Google Scholar 
    32.Wood, L. K., Hays, S. & Zinnert, J. C. Decreased temperature variance associated with biotic composition enhances coastal shrub encroachment. Sci. Rep. 10, 8210 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Stauffer, D. & Aharony, A. Introduction to Percolation Theory (Taylor and Francis, London, 1985).34.Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Scanlon, T. M., Caylor, K. K., Levin, S. A. & Rodriguez-Iturbe, I. Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature 449, 209–212 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kéfi, S., Rietkerk, M., van Baalen, M. & Loreau, M. Local facilitation, bistability and transitions in arid ecosystems. Theor. Popul. Biol. 71, 367–379 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Berdugo, M., Kéfi, S., Soliveres, S. & Maestre, F. T. Plant spatial patterns identify alternative ecosystem multifunctionality states in global drylands. Nat. Ecol. Evol. 1, 3 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Dakos, V., Kéfi, S., Rietkerk, M., van Nes, E. H. & Scheffer, M. Slowing down in spatially patterned ecosystems at the brink of collapse. Am. Nat. 177, E153–E166 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Weerman, E. J. et al. Changes in diatom patch-size distribution and degradation in a spatially self-organized intertidal mudflat ecosystem. Ecology 93, 608–618 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2012).Article 

    Google Scholar 
    41.van Belzen, J. et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Commun. 8, 15811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.USACE-TEC & JALBTCX. Hyperspectral imagery for Hog Island, VA, 2013 ver 7. Environmental Data Initiative. https://doi.org/10.6073/pasta/6a5cc305e93c2baf9283facee688c504 (2018).43.Young, D. R. et al. Cross-scale patterns in shrub thicket dynamics in the Virginia barrier complex. Ecosystems 10, 854–863 (2007).Article 

    Google Scholar 
    44.Young, D. R., Shao, G. & Porter, J. H. Spatial and temporal growth dynamics of barrier island shrub thickets. Am. J. Bot. 82, 638–645 (1995).Article 

    Google Scholar 
    45.McGarigal, K., Cushman, S. A. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps (University of Massachusetts at Amherst, MA, 2012).46.Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009). 2009.Article 

    Google Scholar 
    47.Hayden, B. P. Ecosystem feedbacks on climate at the landscape scale. Philos. Trans. R. Soc. B, Biol. Sci. 353, 5–18 (1998).Article 

    Google Scholar  More

  • in

    Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish

    1.Pafilis, P. et al. Reproductive biology of insular reptiles: marine subsidies modulate expression of the ‘island syndrome’. Copeia 2011, 545–552 (2011).Article 

    Google Scholar 
    2.Ruttenberg, B. I., Haupt, A. J., Chiriboga, A. I. & Warner, R. R. Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecologia 145, 394–403 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).Article 

    Google Scholar 
    4.Gust, N. Variation in the population biology of protogynous coral reef fishes over tens of kilometres. Can. J. Fish. Aquat. Sci. 61, 205–218 (2004).Article 

    Google Scholar 
    5.Clifton, K. Asynchronous food availability on neighboring Caribbean coral reefs determines seasonal patterns of growth and reproduction for the herbivorous parrotfish Scarus iserti. Mar. Ecol. Prog. Ser. 116, 39–46 (1995).ADS 
    Article 

    Google Scholar 
    6.Goldstein, E. D., D’Alessandro, E. K. & Sponaugle, S. Demographic and reproductive plasticity across the depth distribution of a coral reef fish. Sci. Rep. 6, 34077 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Pérez-Ruzafa, A., Pérez-Marcos, M. & Marcos, C. From fish physiology to ecosystems management: keys for moving through biological levels of organization in detecting environmental changes and anticipate their consequences. Ecol. Ind. 90, 334–345 (2018).Article 

    Google Scholar 
    8.Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Leslie, H. M., Breck, E. N., Chan, F., Lubchenco, J. & Menge, B. A. Barnacle reproductive hotspots linked to nearshore ocean conditions. Proc. Natl. Acad. Sci. 102, 10534–10539 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    11.Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 87–98 (2003).Article 

    Google Scholar 
    12.Glazier, D. S. Trade-offs between reproductive and somatic (storage) investments in animals: a comparative test of the Van Noordwijk and De Jong model. Evol. Ecol. 13, 539–555 (1999).Article 

    Google Scholar 
    13.Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 32, 95–126 (2001).Article 

    Google Scholar 
    14.Stearns, S. C. The Evolution of Life Histories (OUP Oxford, 1992).
    Google Scholar 
    15.Otero, X. L., Peña-Lastra, S. D. L., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751 (2017).
    Google Scholar 
    20.Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327 (2020).Article 

    Google Scholar 
    21.Bonaldo, R., Hoey, A. & Bellwood, D. The ecosystem roles of parrotfishes on tropical reefs. Oceanogr. Mar. Biol. 52, 81–132 (2014).Article 

    Google Scholar 
    22.Hoey, A. S. Feeding in parrotfishes: the influence of species, body size, and temperature. In Biology of Parrotfishes (ed Hoey, A. S. & Bonaldo, R. M) 119–133 (CRC Press, 2018).Chapter 

    Google Scholar 
    23.Lange, I. D. et al. Site-level variation in parrotfish grazing and bioerosion as a function of species-specific feeding metrics. Diversity 12, 379 (2020).Article 

    Google Scholar 
    24.Lokrantz, J., Nyström, M., Thyresson, M. & Johansson, C. The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27, 967–974 (2008).ADS 
    Article 

    Google Scholar 
    25.Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Graham, N. A. J. & McClanahan, T. R. The last call for marine wilderness? Bioscience 63, 397–402 (2013).Article 

    Google Scholar 
    28.Hays, G. C. et al. A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges. Mar. Biol. 167, 159 (2020).Article 

    Google Scholar 
    29.Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. Mar. Freshwat. Ecosyst. 22, 232–261 (2012).CAS 
    Article 

    Google Scholar 
    30.Carr, P. et al. Status and phenology of breeding seabirds and a review of Important bird and biodiversity areas in the British Indian Ocean Territory. Bird Conserv. Int. 31,  14–34 (2021).Article 

    Google Scholar 
    31.Hilton, G. M. & Cuthbert, R. J. The catastrophic impact of invasive mammalian predators on birds of the UK Overseas Territories: a review and synthesis. Ibis 152, 443–458 (2010).Article 

    Google Scholar 
    32.Stoddart, D. R. Rainfall on Indian Ocean coral islands. Atoll Res. Bull. 147, 1–21 (1971).Article 

    Google Scholar 
    33.Perry, C. T., Kench, P. S., O’Leary, M. J., Morgan, K. M. & Januchowski-Hartley, F. Linking reef ecology to island building: parrotfish identified as major producers of island-building sediment in the Maldives. Geology 43, 503–506 (2015).ADS 
    Article 

    Google Scholar 
    34.Yeager, L. A., Marchand, P., Gill, D. A., Baum, J. K. & McPherson, J. M. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98, 1976–1976 (2017).PubMed 
    Article 

    Google Scholar 
    35.Taylor, B. M., Trip, E. D. L. & Choat, J. H. Dynamic demography: investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes (eds Hoey, A. S. & Bonaldo, R. M.) 69–98 (CRC Press, 2018).Chapter 

    Google Scholar 
    36.Colin, P. L. & Bell, L. J. Aspects of the spawning of labrid and scarid fishes (Pisces: Labroidei) at Enewetak Atoll, Marshall Islands with notes on other families. Environ. Biol. Fishes 31, 229–260 (1991).Article 

    Google Scholar 
    37.Bay, L. K., Choat, J. H., van Herwerden, L. & Robertson, D. R. High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?. Mar. Biol. 144, 757–767 (2004).CAS 
    Article 

    Google Scholar 
    38.Meyer, C. G., Papastamatiou, Y. P. & Clark, T. B. Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. Mar. Biol 157, 1499–1511 (2010).Article 

    Google Scholar 
    39.Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J. & Lowerre-Barbieri, S. K. A standardized terminology for describing reproductive development in fishes. Mar. Coast. Fish. 3, 52–70 (2011).Article 

    Google Scholar 
    40.Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).ADS 
    Article 

    Google Scholar 
    41.Froese, R. & Pauly, D. FishBase (World Wide Web Electronic Publication, 2018).
    Google Scholar 
    42.Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).ADS 
    Article 

    Google Scholar 
    43.Polunin, N. V. C. & Roberts, C. M. Greater biomass and value of target coral-reef fishes in two small Caribbean marine reserves. Mar. Ecol. Prog. Ser. 100, 167–176 (1993).ADS 
    Article 

    Google Scholar 
    44.Wilson, S. K., Graham, N. A. J. & Polunin, N. V. C. Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar. Biol. 151, 1069–1076 (2007).Article 

    Google Scholar 
    45.McCauley, D. J. et al. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Kurita, Y., Meier, S. & Kjesbu, O. S. Oocyte growth and fecundity regulation by atresia of Atlantic herring (Clupea harengus) in relation to body condition throughout the maturation cycle. J. Sea Res. 49, 203–219 (2003).ADS 
    Article 

    Google Scholar 
    48.Hoey, J., McCormick, M. I. & Hoey, A. S. Influence of depth on sex-specific energy allocation patterns in a tropical reef fish. Coral Reefs 26, 603–613 (2007).ADS 
    Article 

    Google Scholar 
    49.Tootell, J. S. & Steele, M. A. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia 181, 13–24 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Francis, R. I. C. C. Are growth parameters estimated from tagging and age-length data comparable?. Can. J. Fish. Aquat. Sci. 45, 936–942 (1988).Article 

    Google Scholar 
    51.Choat, J. H. & Robertson, D. R. Age-based studies. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed Sale, P. F.) 57–80 (Academic Press, 2002).Chapter 

    Google Scholar 
    52.McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2020).Book 

    Google Scholar 
    53.Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    54.Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).Article 

    Google Scholar 
    55.Hoenig, J. M. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82, 898–903 (1983).
    Google Scholar 
    56.Taylor, B. M. et al. Bottom-up processes mediated by social systems drive demographic traits of coral-reef fishes. Ecology 99, 642–651 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Taylor, B. M. Drivers of protogynous sex change differ across spatial scales. Proc. Roy. Soc. B: Biol. Sci. 281, 20132423 (2014).Article 

    Google Scholar 
    58.Ruttenberg, B. I. et al. Predator-induced demographic shifts in coral reef fish assemblages. PLoS ONE 6, e21062 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Gust, N., Choat, J. & Ackerman, J. Demographic plasticity in tropical reef fishes. Mar. Biol. 140, 1039–1051 (2002).Article 

    Google Scholar 
    60.Friedlander, A. & DeMartini, E. Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Mar. Ecol. Prog. Ser. 230, 253–264 (2002).ADS 
    Article 

    Google Scholar 
    61.Richardson, K. M., Iverson, J. B. & Kurle, C. M. Marine subsidies likely cause gigantism of iguanas in the Bahamas. Oecologia 189, 1005–1015 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Croll, D. A., Maron, J. L., Estes, J. A., Danner, E. M. & Byrd, G. V. Introduced predators transform subarctic islands from grassland to tundra. Science 307, 1959–1961 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Briggs, A. A. et al. Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos. PLoS ONE 7, e41364 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
    Google Scholar 
    65.Kolb, G., Ekholm, J. & Hambäck, P. Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Mar. Ecol. Prog. Ser. 417, 287–300 (2010).ADS 
    Article 

    Google Scholar 
    66.Lorrain, A. et al. Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci. Rep. 7, 3721 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Plass-Johnson, J. G., McQuaid, C. D. & Hill, J. M. Stable isotope analysis indicates a lack of inter- and intra-specific dietary redundancy among ecologically important coral reef fishes. Coral Reefs 32, 429–440 (2013).ADS 
    Article 

    Google Scholar 
    68.Mizutani, H. & Wada, E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69, 340–349 (1988).Article 

    Google Scholar 
    69.Erler, D. V. et al. Has nitrogen supply to coral reefs in the south Pacific Ocean changed over the past 50 thousand years?. Paleoceanogr. Paleoclimatol. 34, 567–579 (2019).ADS 
    Article 

    Google Scholar 
    70.Benstead, J. P. et al. Coupling of dietary phosphorus and growth across diverse fish taxa: a meta-analysis of experimental aquaculture studies. Ecology 95, 2768–2777 (2014).Article 

    Google Scholar 
    71.McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 16, 23–57 (2015).Article 

    Google Scholar 
    72.Sogard, S. M. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60, 1129–1157 (1997).
    Google Scholar 
    73.Walsh, S. M., Hamilton, S. L., Ruttenberg, B. I., Donovan, M. K. & Sandin, S. A. Fishing top predators indirectly affects condition and reproduction in a reef-fish community. J. Fish Biol. 80, 519–537 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.DeMartini, E., Friedlander, A. & Holzwarth, S. Size at sex change in protogynous labroids, prey body size distributions, and apex predator densities at NW Hawaiian atolls. Mar. Ecol. Prog. Ser. 297, 259–271 (2005).ADS 
    Article 

    Google Scholar 
    75.Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).ADS 
    Article 

    Google Scholar 
    76.Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020).Article 

    Google Scholar 
    77.Hixon, M. A., Johnson, D. W. & Sogard, S. M. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J. Mar. Sci. 71,  2171–2185 (2014).Article 

    Google Scholar 
    78.Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Buckner, E. V., Hernández, D. L. & Samhouri, J. F. Conserving connectivity: Human influence on subsidy transfer and relevant restoration efforts. Ambio 47, 493–503 (2018).PubMed 

    Google Scholar 
    80.Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. PNAS 113, 4033–4038 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P., Graham, N. A. J. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. https://doi.org/10.1016/j.cub.2021.03.104 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Lack of detectable genetic isolation in the cyclic rodent Microtus arvalis despite large landscape fragmentation owing to transportation infrastructures

    1.Ibisch, P. L. et al. A global map of roadless areas and their conservation status. Science 354, 1423–1427 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Torres, A., Jaeger, J. A. G. & Alonso, J. C. Assessing large-scale wildlife responses to human infrastructure development. PNAS 113, 8472–8477 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bennett, V. J. Effects of road density and pattern on the conservation of species and biodiversity. Curr. Landsc. Ecol. Rep. 2, 1–11 (2017).Article 

    Google Scholar 
    4.Coffin, A. W. From roadkill to road ecology: a review of the ecological effects of roads. J. Transp. Geogr. 15, 396–406 (2007).Article 

    Google Scholar 
    5.Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol. Soc. 14, 21 (2009).Article 

    Google Scholar 
    6.Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231 (1998).Article 

    Google Scholar 
    7.Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).Article 

    Google Scholar 
    8.Ascensão, F. et al. Disentangle the causes of the road barrier effect in small mammals through genetic patterns. PLoS ONE 11, e0151500 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Dyer, S. J., O’Neill, J. P., Wasel, S. M. & Boutin, S. Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Can. J. Zool. 80, 839–845 (2002).Article 

    Google Scholar 
    10.Glista, D. J., DeVault, T. L. & DeWoody, J. A. A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plan. 91, 1–7 (2009).Article 

    Google Scholar 
    11.Taylor, B. D. & Goldingay, R. L. Roads and wildlife: impacts, mitigation and implications for wildlife management in Australia. Wildl. Res. 37, 320–331 (2010).Article 

    Google Scholar 
    12.Tigas, L. A., Van Vuren, D. H. & Sauvajot, R. M. Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol. Conserv. 108, 299–306 (2002).Article 

    Google Scholar 
    13.Herrmann, H.-W., Pozarowski, K. M., Ochoa, A. & Schuett, G. W. An interstate highway affects gene flow in a top reptilian predator (Crotalus atrox) of the Sonoran Desert. Conserv. Genet. 18, 911–924 (2017).CAS 
    Article 

    Google Scholar 
    14.Holderegger, R. & Di Giulio, M. The genetic effects of roads: a review of empirical evidence. Basic Appl. Ecol. 11, 522–531 (2010).Article 

    Google Scholar 
    15.Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    16.Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).Article 

    Google Scholar 
    17.Kerley, L. L. et al. Effects of roads and human disturbance on Amur tigers. Conserv. Biol. 16, 97–108 (2002).Article 

    Google Scholar 
    18.Roedenbeck, I. A. & Voser, P. Effects of roads on spatial distribution, abundance and mortality of brown hare (Lepus europaeus) in Switzerland. Eur. J. Wildl. Res. 54, 425–437 (2008).Article 

    Google Scholar 
    19.Clark, R. W., Brown, W. S., Stechert, R. & Zamudio, K. R. Roads, interrupted dispersal, and genetic diversity in timber Rattlesnakes. Conserv. Biol. 24, 1059–1069 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Niko, B. & Waits, L. P. Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol. Ecol. 18, 4151–4164 (2009).Article 

    Google Scholar 
    21.Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    22.Amos, W. & Balmford, A. When does conservation genetics matter?. Heredity 87, 257–265 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Frankham, R. Genetics and extinction. Biol. Cons. 126, 131–140 (2005).Article 

    Google Scholar 
    24.Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. U. S. A. 118, e2015096118 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Keller, I. & Largiadèr, C. R. Recent Habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc. Biol. Sci. 270, 417–423 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Noël, S., Ouellet, M., Galois, P. & Lapointe, F.-J. Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv. Genet. 8, 599–606 (2007).Article 
    CAS 

    Google Scholar 
    27.Marsh, D. M. et al. Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv. Genet. 9, 603–613 (2008).Article 

    Google Scholar 
    28.Brehme, C. S., Tracey, J. A., Mcclenaghan, L. R. & Fisher, R. N. Permeability of roads to movement of scrubland lizards and small mammals. Conserv. Biol. 27, 710–720 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ford, A. T. & Clevenger, A. P. Factors affecting the permeability of road mitigation measures to the movement of small mammals. Can. J. Zool. 97, 379–384 (2018).Article 

    Google Scholar 
    30.Claireau, F. et al. Major roads have important negative effects on insectivorous bat activity. Biol. Conserv. 235, 53–62 (2019).Article 

    Google Scholar 
    31.Jacobson, S. L., Bliss-Ketchum, L. L., Rivera, C. E. & Smith, W. P. A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 7, e01345 (2016).Article 

    Google Scholar 
    32.Assis, J. C., Giacomini, H. C. & Ribeiro, M. C. Road permeability index: evaluating the heterogeneous permeability of roads for wildlife crossing. Ecol. Ind. 99, 365–374 (2019).Article 

    Google Scholar 
    33.Lesbarrères, D., Primmer, C. R., Lodé, T. & Merilä, J. The effects of 20 years of highway presence on the genetic structure of Rana dalmatina populations. Écoscience 13, 531–538 (2006).Article 

    Google Scholar 
    34.Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics: quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19, 4179–4191 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24, 6021–6040 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Blair, C. et al. A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol. Ecol. Resour. 12, 822–833 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Mona, S., Ray, N., Arenas, M. & Excoffier, L. Genetic consequences of habitat fragmentation during a range expansion. Heredity 112, 291–299 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Weyer, J., Jørgensen, D., Schmitt, T., Maxwell, T. J. & Anderson, C. D. Lack of detectable genetic differentiation between den populations of the Prairie Rattlesnake (Crotalus viridis) in a fragmented landscape. Can. J. Zool. 92, 837–846 (2014).Article 

    Google Scholar 
    39.Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10, 1500–1508 (1996).Article 

    Google Scholar 
    40.Ehrich, D. & Jorde, P. E. High genetic variability despite high-amplitude population cycles in lemmings. J. Mammal. 86, 380–385 (2005).Article 

    Google Scholar 
    41.Gauffre, B. et al. Short-term variations in gene flow related to cyclic density fluctuations in the common vole. Mol. Ecol. 23, 3214–3225 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Schweizer, M., Excoffier, L. & Heckel, G. Fine-scale genetic structure and dispersal in the common vole (Microtus arvalis). Mol. Ecol. 16, 2463–2473 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Keane, B., Ross, S., Crist, T. O. & Solomon, N. G. Fine-scale spatial patterns of genetic relatedness among resident adult prairie voles. J. Mammal. 96, 1194–1202 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Boyce, C. C. K. & Boyce, J. L. Population biology of Microtus arvalis. II. Natal and breeding dispersal of females. J. Anim. Ecol. 57, 723–736 (1988).Article 

    Google Scholar 
    45.Luque-Larena, J. J. et al. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14, 432–441 (2013).Article 

    Google Scholar 
    46.Salamolard, M., Butet, A., Leroux, A. & Bretagnolle, V. Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81, 2428–2441 (2000).Article 

    Google Scholar 
    47.Krebs, C. J. & Myers, J. H. Population cycles in small mammals. In Advances in Ecological Research Vol. 8 (ed. MacFadyen, A.) 267–399 (Academic Press, 1974).
    Google Scholar 
    48.Gerlach, G. & Musolf, K. Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv. Biol. 14, 1066–1074 (2000).Article 

    Google Scholar 
    49.Rico, A., Kindlmann, P. & Sedláček, F. Can the barrier effect of highways cause genetic subdivision in small mammals?. Acta Theriol. 54, 297–310 (2009).Article 

    Google Scholar 
    50.Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Motro, U. & Thomson, G. On heterozygosity and the effective size of populations subject to size changes. Evolution 36, 1059–1066 (1982).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Kirkpatrick, M. & Jarne, P. The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155, 154–167 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Xenikoudakis, G. et al. Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. Mol. Ecol. 24, 3441–3454 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Parra, G. J. et al. Low genetic diversity, limited gene flow and widespread genetic bottleneck effects in a threatened dolphin species, the Australian humpback dolphin. Biol. Conserv. 220, 192–200 (2018).Article 

    Google Scholar 
    55.Berthier, K., Charbonnel, N., Galan, M., Chaval, Y. & Cosson, J.-F. Migration and recovery of the genetic diversity during the increasing density phase in cyclic vole populations. Mol. Ecol. 15, 2665–2676 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Norén, K. & Angerbjörn, A. Genetic perspectives on northern population cycles: bridging the gap between theory and empirical studies: GENETIC structure in cyclic populations. Biol. Rev. 89, 493–510 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Jangjoo, M., Matter, S. F., Roland, J. & Keyghobadi, N. Demographic fluctuations lead to rapid and cyclic shifts in genetic structure among populations of an alpine butterfly, Parnassius smintheus. J. Evol. Biol. 33, 668–681 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.ESRI. ArcGIS desktop: release 10.3 Environmental Systems Research Institute, Redlands, CA (2015).59.Saunders, S. C., Mislivets, M. R., Chen, J. & Cleland, D. T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 103, 209–225 (2002).Article 

    Google Scholar 
    60.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    61.Schlaepfer, D. R., Braschler, B., Rusterholz, H.-P. & Baur, B. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9, e02488 (2018).Article 

    Google Scholar 
    62.Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Compton, B. W., McGarigal, K., Cushman, S. A. & Gamble, L. R. A resistant-Kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21, 788–799 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Balkenhol, N., Cushman, S., Storfer, A. & Waits, L. Landscape Genetics: Concepts, Methods, Applications (Wiley, 2015).Book 

    Google Scholar 
    65.Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Lloyd, M. W., Campbell, L. & Neel, M. C. The Power to Detect Recent Fragmentation Events Using Genetic Differentiation Methods. PLoS ONE 8, e63981 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Smouse, P. E., Long, J. C. & Sokal, R. R. Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst. Zool. 35, 627–632 (1986).Article 

    Google Scholar 
    68.Nowak, R. M. Walker’s Mammals of the World (Johns Hopkins University Press, 1999).
    Google Scholar 
    69.García, J. T. et al. A complex scenario of glacial survival in Mediterranean and continental refugia of a temperate continental vole species (Microtus arvalis) in Europe. J. Zool. Syst. Evol. Res. 58, 459–474 (2020).Article 

    Google Scholar 
    70.Martínková, N. et al. Divergent evolutionary processes associated with colonization of offshore islands. Mol. Ecol. 22, 5205–5220 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Keyghobadi, N. K. The genetic implications of habitat fragmentation for animals. Can. J. Zool. 85(10), 1049–1064 (2007).Article 

    Google Scholar 
    72.Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16, 977–992 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Zellmer, A. J. & Knowles, L. L. Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol. Ecol. 18, 3593–3602 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Delaney, K. S., Riley, S. P. D. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5, e12767 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Tkadlec, E. & Stenseth, N. C. A new geographical gradient in vole population dynamics. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1547–1552 (2001).CAS 
    Article 

    Google Scholar 
    76.Lambin, X., Bretagnolle, V. & Yoccoz, N. G. Vole population cycles in northern and southern Europe: Is there a need for different explanations for single pattern?. J. Anim. Ecol. 75, 340–349 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Ehrich, D. & Stenseth, N. C. Genetic structure of Siberian lemmings (Lemmus sibiricus) in a continuous habitat: large patches rather than isolation by distance. Heredity 86, 716–730 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Gauffre, B., Estoup, A., Bretagnolle, V. & Cosson, J. F. Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol. Ecol. 17, 4619–4629 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Galliard, J.-F.L., Rémy, A., Ims, R. A. & Lambin, X. Patterns and processes of dispersal behaviour in arvicoline rodents. Mol. Ecol. 21, 505–523 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Gauffre, B., Petit, E., Brodier, S., Bretagnolle, V. & Cosson, J. F. Sex-biased dispersal patterns depend on the spatial scale in a social rodent. Proc. R. Soc. B Biol. Sci. 276, 3487 (2009).CAS 
    Article 

    Google Scholar 
    81.Lidicker, W.Z. Jr. The role of dispersal in the demography of small mammals, in Small Mammals: their production and population dynamics. Eds F.B. Golley, K. Petrusewicz and L. Ryszkowski, 103–28 (Cambridge University Press, London, 1975).82.Gaines, M. S. & McClenaghan, L. R. Dispersal in small mammals. Annu. Rev. Ecol. Syst. 11, 163–196 (1980).Article 

    Google Scholar 
    83.Swingland, I. R. & Greenwood, P. J. The Ecology of Animal Movement (Clarendon Press, 1983).
    Google Scholar 
    84.Burton, C., Krebs, C. J. & Taylor, E. B. Population genetic structure of the cyclic snowshoe hare (Lepus americanus) in southwestern Yukon, Canada. Mol. Ecol. 11, 1689–1701 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Plante, Y., Boag, P. T. & White, B. N. Microgeographic variation in mitochondrial DNA of meadow voles (Microtus pennsylvanicus) in relation to population density. Evolution 43, 1522–1537 (1989).PubMed 
    PubMed Central 

    Google Scholar 
    86.Encuesta sobre superficies y rendimientos del cultivo 2012. Catálogo de publicaciones de la Administración General del Estado (MAGRAMA, 2013).87.Oñate, J. J. et al. Programa piloto de acciones de conservación de la biodiversidad en sistemas ambientales con usos agrarios en el marco del desarrollo rural. Convenio de colaboración entre la Dirección General para la Biodiversidad (Ministerio de Medio Ambiente) y el Departamento Interuniversitario de Ecología (Universidad Autónoma de Madrid, 2003).88.Ji, S. et al. Impact of different road types on small mammals in Mt. Kalamaili Nature Reserve. Transp. Res. Part D Transp. Environ. 50, 223–233 (2017).Article 

    Google Scholar 
    89.Vignieri, S. N. Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus): connectivity patterns in pacific jumping mice. Mol. Ecol. 14, 1925–1937 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Russo, I.-R.M., Sole, C. L., Barbato, M., von Bramann, U. & Bruford, M. W. Landscape determinants of fine-scale genetic structure of a small rodent in a heterogeneous landscape (Hluhluwe-iMfolozi Park, South Africa). Sci. Rep. 6, 29168 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Mougeot, F., Lambin, X., Rodríguez-Pastor, R., Romairone, J. & Luque-Larena, J.-J. Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 100, e02776 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Schwartz, M. K. & McKelvey, K. S. Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv. Genet. 10, 441 (2009).Article 

    Google Scholar 
    93.Strauss, W. M. Preparation of genomic DNA from Mammalian tissue. Curr. Protoc. Mol. Biol. 42, 1–3 (1998).Article 

    Google Scholar 
    94.Ishibashi, Y. et al. Polymorphic microsatellite DNA markers in the field vole Microtus montebelli. Mol. Ecol. 8, 163–164 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Gauffre, B., Galan, M., Bretagnolle, V. & Cosson, J. Polymorphic microsatellite loci and PCR multiplexing in the common vole, Microtus arvalis. Mol. Ecol. Notes 7, 830–832 (2007).CAS 
    Article 

    Google Scholar 
    96.Johnson, P. C. D. & Haydon, D. T. Software for quantifying and simulating microsatellite genotyping error. Bioinform. Biol. Insights 1, 71–75 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    97.Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).CAS 
    Article 

    Google Scholar 
    98.Brookfield, J. F. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).Article 

    Google Scholar 
    100.Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).Article 

    Google Scholar 
    102.Coulon, A. genhet: an easy-to-use R function to estimate individual heterozygosity. Mol. Ecol. Resour. 10, 167–169 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Coltman, D. W., Pilkington, J. G. & Pemberton, J. M. Fine-scale genetic structure in a free-living ungulate population. Mol. Ecol. 12, 733–742 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Amos, W. et al. The influence of parental relatedness on reproductive success. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2021–2027 (2001).CAS 
    Article 

    Google Scholar 
    105.Aparicio, J. M., Ortego, J. & Cordero, P. J. What should we weigh to estimate heterozygosity, alleles or loci? Estimating heterozygosity from neutral markers. Mol. Ecol. 15, 4659–4665 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Nei, M. Analysis of gene diversity in subdivided populations. PNAS 70, 3321–3323 (1973).ADS 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    112.Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    113.Bowcock, A. M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Takezaki, N. & Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144, 389–399 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561–573 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    117.Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185 (1996).Article 

    Google Scholar 
    118.Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    Article 

    Google Scholar 
    120.Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).Article 

    Google Scholar 
    121.Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data (Springer, Berlin, 2007).MATH 
    Book 

    Google Scholar 
    122.Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, 2014).MATH 

    Google Scholar 
    123.Kirby, K. N. & Gerlanc, D. BootES: an R package for bootstrap confidence intervals on effect sizes. Behav. Res. Methods 45, 905–927 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    124.Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).MATH 
    Book 

    Google Scholar 
    126.González-Esteban, J. & Villate I. Microtus arvalis Pallas, 1778. In: Atlas y Libro Rojo de los Mamíferos Terrestres de España, Palomo, L.J., Gisbert, J. & Blanco J.C. (Eds.), Dirección General para la Biodiversidad-SECEM-SECEMU, 426-428 (2007). More