in

Comparative physiological and transcriptomic analyses of photosynthesis in Sphagneticola calendulacea (L.) Pruski and Sphagneticola trilobata (L.) Pruski

  • 1.

    Mack, R. N. et al. Biotic invasions: causes, epidemiology global consequences and control. Ecol. Appl. 10, 689–710. https://doi.org/10.2307/2641039 (2000).

    Article  Google Scholar 

  • 2.

    Rembold, K., Mangopo, H., Tjitrosoedirdjo, S. S. & Kreft, H. Plant diversity, forest dependency, and alien plant invasions in tropical agricultural landscapes. Biol. Conserv. 213, 234–242. https://doi.org/10.1016/j.biocon.2017.07.020 (2017).

    Article  Google Scholar 

  • 3.

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66. https://doi.org/10.1016/j.tree.2012.07.013 (2013).

    Article  PubMed  Google Scholar 

  • 4.

    Weber, E., Sun, S. G. & Li, B. Invasive alien plants in China: diversity and ecological insights. Biol. Invasions. 10, 1411–1429. https://doi.org/10.1007/s10530-008-9216-3 (2008).

    Article  Google Scholar 

  • 5.

    Wu, W., Zhou, R. C., Ni, G. Y., Shen, H. & Ge, X. J. Is a new invasive herb emerging? Molecular confirmation and preliminary evaluation of natural hybridization between the invasive Sphagneticola trilobata (Asteraceae) and its native congener S. calendulaceain South China. Biol. Invasions. 15, 75–88. https://doi.org/10.1007/s10530-012-0269-y (2013).

    Article  Google Scholar 

  • 6.

    Sun, Z. Y. et al. Responses of the hybrid between Sphagneticola trilobata and Sphagneticola calendulacea to low temperature and weak light characteristic in south china. Sci. Rep. 5, 16906. https://doi.org/10.1038/srep16906 (2015).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Song, L. Y., Sun, L. L., Shu, Z., Li, W. H. & Peng, C. L. Physiological functions of the red leaves of Wedelia trilobata induced by high irradiance in summer. Biodivers. Sci. 17, 188. https://doi.org/10.3724/SP.J.1003.2009.09007 (2009).

    CAS  Article  Google Scholar 

  • 8.

    Vilà, M. et al. Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14, 702–708. https://doi.org/10.1111/j.1461-0248.2011.01628.x (2011).

    Article  PubMed  Google Scholar 

  • 9.

    Liu, Y. J. et al. Do invasive alien plants benefit more from global environmental change than native plants?. Glob. Change Biol. https://doi.org/10.1111/gcb.13579 (2016).

    Article  Google Scholar 

  • 10.

    Qiu, J., Shalimu, D. & Tan, D. Reproductive characteristics of the invasive species Solanum rostratum in different habitats of Xinjiang, China. Biodivers. Sci. 21, 590–600. https://doi.org/10.3724/SP.J.1003.2013.11044 (2013).

    Article  Google Scholar 

  • 11.

    Čuda, J., Skálová, H., Janovský, Z. & Pyšek, P. Competition among native and invasive impatiens species: the roles of environmental factors, population density and life stage. Aob Plants. 7, plv033. https://doi.org/10.1093/aobpla/plv033 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Jiang, L., Zhang, Y. W., Guo, Q., Liu, Y. & Li, C. M. Cytological study on Mikania cordata (Asteraceae),a native plant in China. Guihaia 38, 324–331. https://doi.org/10.11931/guihaia.gxzw20170302 (2018).

    Article  Google Scholar 

  • 13.

    Cipollini, D., Stevenson, R., Enright, S., Eyles, A. & Bonello, P. Phenolic metabolites in leaves of the invasive shrub, Lonicera maackii, and their potential phytotoxic and anti-herbivore effects. J. Chem. Ecol. 34, 144–152. https://doi.org/10.1007/s10886-008-9426-2 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Banerjee, A. K. & Dewanji, A. Role of intraspecific trait plasticity in, Mikania micrantha, Kunth growth and impact of its abundance on community composition. J. Asia-Pac Biodivers. 10, 237–249. https://doi.org/10.1016/j.japb.2017.04.003 (2017).

    Article  Google Scholar 

  • 15.

    Lu, Z. F. et al. The photosynthetic and structural differences between leaves and siliques of Brassica napus exposed to potassium deficiency. BMC Plant Biol. 17, 240. https://doi.org/10.1186/s12870-017-1201-5 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Song, L. Y., Li, C. H. & Peng, S. L. Elevated CO2 increases energy-use efficiency of invasive Wedelia trilobataover its indigenous congener. Biol. Invasions. 12, 1221–1230. https://doi.org/10.1007/s10530-009-9541-1 (2010).

    Article  Google Scholar 

  • 17.

    Li, T. et al. Comparative analysis of growth and physiological traits between the natural hybrid, Sphagneticola trilobata × calendulacea, and its parental species. Nord. J. Bot. 34, 219–227. https://doi.org/10.1111/njb.00910 (2016).

    ADS  Article  Google Scholar 

  • 18.

    Song, L. Y., Peng, C. L. & Peng, S. L. Comparison of leaf construction costs between three invasive species and three native species in South China. Biodivers. Sci. 17, 378. https://doi.org/10.3724/SP.J.1003.2009.09077 (2009).

    CAS  Article  Google Scholar 

  • 19.

    Wheat, C. W. Rapidly developing functional genomics in ecological model systems via 454 transcriptome sequencing. Genetica 138, 433–451. https://doi.org/10.1007/s10709-008-9326-y (2010).

    CAS  Article  PubMed  Google Scholar 

  • 20.

    Cahais, V. et al. Reference-free transcriptome assembly in non-model animals from next-generation sequencing data. Mol. Ecol. Resour. 12, 834–845. https://doi.org/10.1111/j.1755-0998.2012.03148.x (2012).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Strickler, S. R., Bombarely, A. & Mueller, L. A. Designing a transcriptome next-generation sequencing project for a non-model plant species1. Am. J. Bot. 99, 257–266. https://doi.org/10.3732/ajb.1100292 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Geng, Y. et al. Metabolic characteristics of invasive plant Ipomoea Cairica in south china by de novo transcriptomics. J. Trop. Subtrop. Bot. 24, 128–142. https://doi.org/10.11926/j.issn.1005-3395.2016.02.002 (2016).

    CAS  Article  Google Scholar 

  • 23.

    de Carvalho, J. F. et al. Transcriptome de novo assembly from next-generation sequencing and comparative analyses in the hexaploid salt marsh species Spartina maritima and Spartina alterniflora (Poaceae). Heredity 110, 181–193. https://doi.org/10.1038/hdy.2012.76 (2013).

    CAS  Article  Google Scholar 

  • 24.

    Li, L., Xu, L., Wang, X. Y., Pan, G. & De Lu, L. M. novo characterization of the alligator weed (Alternanthera philoxeroides) transcriptome illuminates gene expression under potassium deprivation. J. Genet. 94, 95–104. https://doi.org/10.1007/s12041-015-0493-1 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 25.

    Evans, J. R. Improving photosynthesis. Plant Physiol. 162, 1780–1793. https://doi.org/10.1104/pp.113.219006 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Sun, Z. R., Zhu, N. N., Cheng, L. L. & Yang, C. N. Comparison of photosynthesis and fluorescent parameters between Dendrobium officinale and Dendrobium loddigesii. Int. J. Clin. Exp. Med. 8, 13163–13170 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Wang, L. F., Sun, J. T., Wang, C. Y. & Shangguang, Z. P. Leaf photosynthetic function duration during yield formation of large-spike wheat in rainfed cropping systems. PeerJ. 6, e5532. https://doi.org/10.7717/peerj.5532 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Simkin, A. J., Lopez-Calcagno, P. E. & Raines, C. A. Feeding the world: improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 70, 1119–1140 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 29.

    Murchie, E. H. & Lawson, T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64, 3983–3998. https://doi.org/10.1093/jxb/ert208 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Zhang, Q. L., Zhai, J. J., Shao, L., Lin, W. & Peng, C. L. Accumulation of anthocyanins: an adaptation strategy of Mikania micrantha to low temperature in winter. Front. Plant Sci. 10, 1049. https://doi.org/10.3389/fpls.2019.01049 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Vicente, R., Morcuende, R. & Babiano, J. Differences in rubisco and chlorophyll content among tissues and growth stages in two tomato (Lycopersicon esculentum mill.) varieties. Agron. Res. 9, 501–507 (2011).

    Google Scholar 

  • 32.

    Blankenship, R. E. Molecular Mechanisms of Photosynthesis, 2nd edn. (Wiley Blackwell, Weinheim, 2014). https://doi.org/10.1038/scientificamerican0687-42.

  • 33.

    Das, K. & Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2014.00053 (2014).

    Article  Google Scholar 

  • 34.

    Racchi, M. Antioxidant defenses in plants with attention to Prunus and Citrus spp. Antioxidants. 2, 340–369. https://doi.org/10.3390/antiox2040340 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Johnson, G. N., Young, A. J., Scholes, J. D. & Horton, P. The dissipation of excess excitation energy in British plant species. Plant Cell Environ. 16, 673–679. https://doi.org/10.1111/j.1365-3040.1993.tb00485.x (1993).

    CAS  Article  Google Scholar 

  • 36.

    Jin, H. L. et al. Optimization of light harvesting pigment improves photosynthetic efficiency. Plant Physiol. 172, 1720–1731. https://doi.org/10.1104/pp.16.00698 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Nickelsen, J. & Rengstl, B. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 64, 609–635. https://doi.org/10.1146/annurev-arplant-050312-120124 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Liu, H. M. et al. Effects of low temperature on photosynthetic proteins and photosynthetic capacities of two species of spiraea. Acta Horticult. Sin. 42, 321–331. https://doi.org/10.16420/j.issn.0513-353x.2014-0221 (2015).

    CAS  Article  Google Scholar 

  • 39.

    Pi, X. et al. Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. PNAS 115, 4423–4428. https://doi.org/10.1073/pnas.1722482115 (2018).

    CAS  Article  PubMed  Google Scholar 

  • 40.

    Aguilera, A. G., Alpert, P., Dukes, J. S. & Harrington, R. Impacts of the invasive plant Fallopia japonica (Houtt.) on plant communities and ecosystem processes. Biol. Invasions. 12, 1243–1252. https://doi.org/10.1007/s10530-009-9543-z (2010).

    Article  Google Scholar 

  • 41.

    Long, S. P., Zhu, X. G., Naidu, S. L. & Ort, D. R. Can improvement in photosynthesis increase crop yields?. Plant Cell. Environ. 29, 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x (2006).

    CAS  Article  PubMed  Google Scholar 

  • 42.

    Li, G. L., Wu, H. X., Sun, Y. Q. & Zhang, S. Y. Response of chlorophyll fluorescence parameters to drought stress in sugar beet seedlings. Russian J. Plant Physiol. 60, 337–342. https://doi.org/10.1134/S1021443713020155 (2013).

    CAS  Article  Google Scholar 

  • 43.

    Wellburn, A. R. The spectral determination of chlorophylls a and b, as well as Total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 144, 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2 (1994).

    CAS  Article  Google Scholar 

  • 44.

    Zhang, X. H., Zheng, X. T., Sun, B. Y. & Peng, C. L. Over-expression of the CHS gene enhances resistance of Arabidopsisleaves to high light. Environ. Exp. Bot. 154, 33–43. https://doi.org/10.1016/j.envexpbot.2017.12.011 (2018).

    CAS  Article  Google Scholar 

  • 45.

    Pan, C. Z., Ahammed, G. J., Li, X., Shi, K. Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Front. Plant Sci. 9, 1739. https://doi.org/10.2289/fpls.2018.01739 (2018).

  • 46.

    Ahammed, G. J., Xu, W., Liu, A. R., Chen, S. C. COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front Plant Sci. 9, 998. https://doi.org/10.3389/fpls.2018.00998 (2018).


  • Source: Ecology - nature.com

    More than a meal

    Linking structural and compositional changes in archaeological human bone collagen: an FTIR-ATR approach