in

Molecular trade-offs in soil organic carbon composition at continental scale

  • 1.

    Baldock, J. A., Masiello, C. A., Gélinas, Y. & Hedges, J. I. Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar. Chem. 92, 39–64 (2004).

    Google Scholar 

  • 2.

    Sutton, R. & Sposito, G. Molecular structure in soil humic substances: the new view. Environ. Sci. Technol. 39, 9009–9015 (2005).

    Google Scholar 

  • 3.

    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    Google Scholar 

  • 4.

    Baldock, J. A. et al. Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust. J. Soil Res. 35, 1061–1084 (1997).

    Google Scholar 

  • 5.

    Mahieu, N., Randall, E. W. & Powlson, D. S. Statistical analysis of published carbon-13 CPMAS NMR spectra of soil organic matter. Soil Sci. Soc. Am. J. 63, 307–319 (1999).

    Google Scholar 

  • 6.

    Grandy, A. S. & Neff, J. C. Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 404, 297–307 (2008).

    Google Scholar 

  • 7.

    Baldock, J. A. et al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 16, 1–42 (1992).

    Google Scholar 

  • 8.

    Ahmad, R., Nelson, P. N. & Kookana, R. S. The molecular composition of soil organic matter as determined by 13C NMR and elemental analyses and correlation with pesticide sorption. Eur. J. Soil Sci. 57, 883–893 (2006).

    Google Scholar 

  • 9.

    Rasmussen, C. et al. Beyond clay: towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 137, 297–306 (2018).

    Google Scholar 

  • 10.

    Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).

    Google Scholar 

  • 11.

    Wagai, R. et al. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Glob. Change Biol. 19, 1114–1125 (2013).

    Google Scholar 

  • 12.

    Waksman, S. A. & Iyer, K. R. N. Contribution to our knowledge of the chemical nature and origin of humus: I. on the synthesis of the “humus nucleus”. Soil Sci. 34, 43–69 (1932).

    Google Scholar 

  • 13.

    Kirk, T. K. & Farrell, R. L. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465–501 (1987).

    Google Scholar 

  • 14.

    Amelung, W., Brodowski, S., Sandhage-Hofmann, A. & Bol, R. in Advances in Agronomy Vol. 100 (ed. Sparks, D. L.) 155–250 (Elsevier, 2008).

  • 15.

    Thevenot, M., Dignac, M.-F. & Rumpel, C. Fate of lignins in soils: a review. Soil Biol. Biochem. 42, 1200–1211 (2010).

    Google Scholar 

  • 16.

    Bosatta, E. & Ågren, G. I. Soil organic matter quality interpreted thermodynamically. Soil Biol. Biochem. 31, 1889–1891 (1999).

    Google Scholar 

  • 17.

    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2011).

    Google Scholar 

  • 18.

    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).

    Google Scholar 

  • 19.

    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).

    Google Scholar 

  • 20.

    Ma, T. et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 9, 3480 (2018).

    Google Scholar 

  • 21.

    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019).

    Google Scholar 

  • 22.

    Khan, K. S., Mack, R., Castillo, X., Kaiser, M. & Joergensen, R. G. Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma 271, 115–123 (2016).

    Google Scholar 

  • 23.

    Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 3591 (2018).

    Google Scholar 

  • 24.

    Córdova, S. C. et al. Plant litter quality affects the accumulation rate, composition, and stability of mineral-associated soil organic matter. Soil Biol. Biochem. 125, 115–124 (2018).

    Google Scholar 

  • 25.

    Huang, W. et al. Enrichment of lignin-derived carbon in mineral-associated soil organic matter. Environ. Sci. Technol. 53, 7522–7531 (2019).

    Google Scholar 

  • 26.

    Wan, D. et al. Iron oxides selectively stabilize plant-derived polysaccharides and aliphatic compounds in agricultural soils. Eur. J. Soil Sci. 70, 1153–1163 (2019).

    Google Scholar 

  • 27.

    Hernes, P. J., Kaiser, K., Dyda, R. Y. & Cerli, C. Molecular trickery in soil organic matter: hidden lignin. Environ. Sci. Technol. 47, 9077–9085 (2013).

    Google Scholar 

  • 28.

    Klotzbücher, T., Kalbitz, K., Cerli, C., Hernes, P. J. & Kaiser, K. Gone or just out of sight? The apparent disappearance of aromatic litter components in soils. SOIL 2, 325–335 (2016).

    Google Scholar 

  • 29.

    Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeosciences 3, 397–420 (2006).

    Google Scholar 

  • 30.

    Lehmann, J. et al. Australian climate–carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008).

    Google Scholar 

  • 31.

    Mikutta, R., Kleber, M., Torn, M. S. & Jahn, R. Stabilization of soil organic matter: association with minerals or chemical recalcitrance? Biogeochemistry 77, 25–56 (2006).

    Google Scholar 

  • 32.

    Kleber, M. What is recalcitrant soil organic matter? Environ. Chem. 7, 320–332 (2010).

    Google Scholar 

  • 33.

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Google Scholar 

  • 34.

    DiDonato, N., Chen, H., Waggoner, D. & Hatcher, P. G. Potential origin and formation for molecular components of humic acids in soils. Geochim. Cosmochim. Acta 178, 210–222 (2016).

    Google Scholar 

  • 35.

    Scatena, F. An Introduction to the Physiography and History of the Bisley Experimental Watersheds in the Luquillo Mountains of Puerto Rico General Technical Report SO-72 (USDA, 1989).

  • 36.

    Kleber, M. et al. in Advances in Agronomy Vol. 130 (ed. Sparks, D. L.) Ch. 1 (Elsevier, 2015).

  • 37.

    Slessarev, E. W. et al. Water balance creates a threshold in soil pH at the global scale. Nature 540, 567–569 (2016).

    Google Scholar 

  • 38.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Google Scholar 

  • 39.

    Lundström, U. S., van Breemen, N. & Bain, D. The podzolization process. A review. Geoderma 94, 91–107 (2000).

    Google Scholar 

  • 40.

    Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long-term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Change Biol. 18, 2594–2605 (2012).

    Google Scholar 

  • 41.

    Kaiser, K. & Guggenberger, G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem. 31, 711–725 (2000).

    Google Scholar 

  • 42.

    Coward, E. K., Ohno, T. & Plante, A. F. Adsorption and molecular fractionation of dissolved organic matter on iron-bearing mineral matrices of varying crystallinity. Environ. Sci. Technol. 52, 1036–1044 (2018).

    Google Scholar 

  • 43.

    Throckmorton, H. M., Bird, J. A., Dane, L., Firestone, M. K. & Horwath, W. R. The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems. Ecol. Lett. 15, 1257–1265 (2012).

    Google Scholar 

  • 44.

    Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).

    Google Scholar 

  • 45.

    LaRowe, D. E. & Van Cappellen, P. Degradation of natural organic matter: a thermodynamic analysis. Geochim. Cosmochim. Acta 75, 2030–2042 (2011).

    Google Scholar 

  • 46.

    Ye, C. et al. Reconciling multiple impacts of nitrogen enrichment on soil carbon: plant, microbial and geochemical controls. Ecol. Lett. 21, 1162–1173 (2018).

    Google Scholar 

  • 47.

    Ayres, E., et al. NEON Field and Lab Procedure and Protocol: TIS Soil Pit Sampling Protocol NEON.DOC.001307 (NEON, 2017); https://data.neonscience.org/data-products/DP1.00097.001

  • 48.

    Ayres, E. & Durden, D. NEON Field and Lab Procedure and Protocol: TIS Soil Archiving NEON.DOC.000325 (NEON, 2017); https://data.neonscience.org/data-products/DP1.00097.001

  • 49.

    Ayres, E. NEON Procedure and Protocol: Producing TIS Soil Archive Subsamples for Users NEON.DOC.001306 (NEON, 2017); https://data.neonscience.org/data-products/DP1.00097.001

  • 50.

    Gélinas, Y., Baldock, J. A. & Hedges, J. I. Demineralization of marine and freshwater sediments for CP/MAS 13C NMR analysis. Org. Geochem. 32, 677–693 (2001).

    Google Scholar 

  • 51.

    Harbison, G. S. et al. High-resolution carbon-13 NMR of retinal derivatives in the solid state. J. Am. Chem. Soc. 107, 4809–4816 (1985).

    Google Scholar 

  • 52.

    Mao, J.-D. et al. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci. Soc. Am. J. 64, 873–884 (2000).

    Google Scholar 

  • 53.

    Longbottom, T. L. & Hockaday, W. C. Molecular and isotopic composition of modern soils derived from kerogen-rich bedrock and implications for the global C cycle. Biogeochemistry 143, 239–255 (2019).

    Google Scholar 

  • 54.

    NEON (National Ecological Observatory Network). DP1.00096.001, DP1.10066.001, DP1.10102.001, DP1.10109.001 (accessed September 1, 2019), DP1.10026.001, DP1.10033.001, DP1.10031.001 (accessed May 15, 2020); http://data.neonscience.org

  • 55.

    Sullivan, P. F. et al. Climate and species affect fine root production with long-term fertilization in acidic tussock tundra near Toolik Lake, Alaska. Oecologia 153, 643–652 (2007).

    Google Scholar 

  • 56.

    SanClements, M. et al. Collaborating with NEON. BioScience 70, 107–107 (2020).

    Google Scholar 

  • 57.

    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).

    Google Scholar 

  • 58.

    Revelle, W. psych: Procedures for Personality and Psychological Research v.1.8.12 (Northwestern University, 2018).

  • 59.

    Chittleborough, D. J. Indices of weathering for soils and palaeosols formed on silicate rocks. Aust. J. Earth Sci. 38, 115–120 (1991).

    Google Scholar 

  • 60.

    Hair, J. F., Risher, J. J., Sarstedt, M. & Ringle, C. M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 31, 2–24 (2019).

    Google Scholar 

  • 61.

    Lefcheck, J. S.piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Google Scholar 


  • Source: Ecology - nature.com

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields