in

Tritrophic interactions follow phylogenetic escalation and climatic adaptation

  • 1.

    Fraenkel, G. S. The raison d’être of secondary plant substances. Science 129, 1466–1470 (1959).

  • 2.

    Turlings, T. C. J. & Erb, M. Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63, 433–452, https://doi.org/10.1146/annurev-ento-020117-043507 (2018).

  • 3.

    Turlings, T. C. J., Tumlinson, J. H. & Lewis, W. J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250, 1251–1253 (1990).

  • 4.

    Rasmann, S. et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434, 732–737, https://doi.org/10.1038/Nature03451 (2005).

  • 5.

    Kessler, A. & Heil, M. The multiple faces of indirect defences and their agents of natural selection. Funct. Ecol. 25, 348–357, https://doi.org/10.1111/j.1365-2435.2010.01818.x (2011).

    • Article
    • Google Scholar
  • 6.

    Kergunteuil, A., Röder, G. & Rasmann, S. Environmental gradients and the evolution of tri-trophic interactions. Ecol. Lett. 22, 292–301, https://doi.org/10.1111/ele.13190 (2019).

  • 7.

    Agrawal, A. A. Induced responses to herbivory and increased plant performance. Science 279, 1201–1202 (1998).

  • 8.

    Dicke, M. & Baldwin, I. T. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15, 167–175, https://doi.org/10.1016/j.tplants.2009.12.002 (2010).

  • 9.

    Pichersky, E., Noel, J. P. & Dudareva, N. Biosynthesis of plant volatiles: Nature’s diversity and ingenuity. Science 311, 808–811, https://doi.org/10.1126/science.1118510 (2006).

  • 10.

    Gould, S. J. & Lewontin, R. C. Spandrels of San-Marco and the Panglossian Paradigm – a Critique of the Adaptationist Program. Proceedings of the Royal Society of London Series B-Biological Sciences 205, 581–598 (1979).

  • 11.

    Agrawal, A. A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22, 103–109 (2007).

    • Article
    • Google Scholar
  • 12.

    Futuyma, D. J. & Agrawal, A. A. Evolutionary history and species interactions. Proceedings of the National Academy of Sciences of the United States of America 106, 18043–18044, https://doi.org/10.1073/pnas.0910334106 (2009).

  • 13.

    Stamp, N. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 78, 23–55 (2003).

    • Article
    • Google Scholar
  • 14.

    Defossez, E., Pellissier, L. & Rasmann, S. The unfolding of plant growth form-defence syndromes along elevation gradients. Ecol. Lett. 21, 609–618, https://doi.org/10.1111/ele.12926 (2018).

  • 15.

    Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science 230, 895–899 (1985).

  • 16.

    Fine, P. V. A., Mesones, I. & Coley, P. D. Herbivores promote habitat specialization by trees in amazonian forests. Science 305, 663–665 (2004).

  • 17.

    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology Evolution and Systematics 40, 245–269 (2009).

    • Article
    • Google Scholar
  • 18.

    Galmán, A. et al. A global analysis of elevational gradients in leaf herbivory and its underlying drivers: Effects of plant growth form, leaf habit and climatic correlates. J. Ecol. 106, 413–421, https://doi.org/10.1111/1365-2745.12866 (2018).

  • 19.

    Zhang, S., Zhang, Y. & Ma, K. Latitudinal variation in herbivory: hemispheric asymmetries and the role of climatic drivers. J. Ecol. 104, 1089–1095, https://doi.org/10.1111/1365-2745.12588 (2016).

    • Article
    • Google Scholar
  • 20.

    Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).

    • Article
    • Google Scholar
  • 21.

    Rasmann, S. & Agrawal, A. A. Latitudinal patterns in plant defense: evolution of cardenolides, their toxicity and induction following herbivory. Ecol. Lett. 14, 476–483, https://doi.org/10.1111/j.1461-0248.2011.01609.x (2011).

  • 22.

    Pearse, I. S. & Hipp, A. L. Global patterns of leaf defenses in oak species. Evolution 66, 2272–2286, https://doi.org/10.1111/j.1558-5646.2012.01591.x (2012).

  • 23.

    Moreira, X. et al. Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecol. Lett. 17, 537–546, https://doi.org/10.1111/ele.12253 (2014).

  • 24.

    Pellissier, L. et al. Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecology and Evolution 2, 1818–1825, https://doi.org/10.1002/ece3.296 (2012).

  • 25.

    Moles, A. T. et al. Putting plant resistance traits on the map: a test of the idea that plants are better defended at lower latitudes. New Phytol. 191, 777–788, https://doi.org/10.1111/j.1469-8137.2011.03732.x (2011).

  • 26.

    Rasmann, S., Pellissier, L., Defossez, E., Jactel, H. & Kunstler, G. Climate-driven change in plant–insect interactions along elevation gradients. Funct. Ecol. 28, 46–54, https://doi.org/10.1111/1365-2435.12135 (2014).

    • Article
    • Google Scholar
  • 27.

    Johnson, M. T. J. & Rasmann, S. The latitudinal herbivory-defence hypothesis takes a detour on the map. New Phytol. 191, 589–592, https://doi.org/10.1111/j.1469-8137.2011.03816.x (2011).

  • 28.

    Mitter, C., Farrell, B. & Futuyma, D. J. Phylogenetic studies of insect-plant interactions: Insights into the genesis of diversity. Trends Ecol. Evol. 6, 290–293, https://doi.org/10.1016/0169-5347(91)90007-k (1991).

  • 29.

    Weiblen, G. D., Webb, C. O., Novotny, V., Basset, Y. & Miller, S. E. Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87, S62–S75 (2006).

    • Article
    • Google Scholar
  • 30.

    Ehrlich, P. R. & Raven, P. H. Butterflies and plants – a study in coevolution. Evolution 18, 586–608, https://doi.org/10.2307/2406212 (1964).

    • Article
    • Google Scholar
  • 31.

    Farrell, B. D. & Mitter, C. The timing of insect/plant diversification: might Tetraopes (Coleoptera: Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? Biol. J. Linn. Soc. 63, 553–577 (1998).

    • Google Scholar
  • 32.

    Vermeij, G. J. The evolutionary interaction among species: selection, escalation, and coevolution. Annu. Rev. Ecol. Syst. 25, 219–236 (1994).

    • Article
    • Google Scholar
  • 33.

    Karban, R. & Baldwin, I. T. Induced responses to herbivory. 319 (The University of Chicago Press, 1997).

  • 34.

    Godschalx, A. L., Rodríguez-Castañeda, G. & Rasmann, S. Contribution of different predator guilds to tritrophic interactions along ecological clines. Current Opinion in Insect Science 32, 104–109, https://doi.org/10.1016/j.cois.2019.01.002 (2019).

  • 35.

    Rasmann, S. & Turlings, T. C. J. Root signals that mediate mutualistic interactions in the rhizosphere. Curr. Opin. Plant Biol. 32, 62–68, https://doi.org/10.1016/j.pbi.2016.06.017 (2016).

  • 36.

    Rasmann, S., Ali, J., Helder, J. & van der Putten, W. Ecology and evolution of soil nematode chemotaxis. J. Chem. Ecol. 38, 615–628, https://doi.org/10.1007/s10886-012-0118-6 (2012).

  • 37.

    Degenhardt, J. et al. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences of the United States of America 106, 13213–13218 (2009).

  • 38.

    Kergunteuil, A., Humair, L., Münzbergová, Z. & Rasmann, S. Plant adaptation to different climates shapes the strengths of chemically mediated tritrophic interactions. Funct. Ecol. 33, 1893–1903, https://doi.org/10.1111/1365-2435.13396 (2019).

    • Article
    • Google Scholar
  • 39.

    Heil, M. & Baldwin, I. T. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7, 61–67 (2002).

  • 40.

    Agrawal, A. A., Conner, J. K. & Rasmann, S. In Evolution After Darwin: the First 150 Years (eds Bell, M. A., Futuyma, D. J., Eanes, W. F. & Levinton, J. S.) 243–268 (Sinauer, 2010).

  • 41.

    Thaler, J. S. & Karban, R. A phylogenetic reconstruction of constitutive and induced resistance in. Gossypium. Am. Nat. 149, 1139–1146 (1997).

  • 42.

    Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).

    • Article
    • Google Scholar
  • 43.

    Steward, J. L. & Keeler, K. H. Are there trade-offs among antiherbivore defenses in Ipomoea (Convolvulaceae)? Oikos 53, 79–86, https://doi.org/10.2307/3565666 (1988).

    • Article
    • Google Scholar
  • 44.

    Nagy, L. & Grabherr, G. The biology of alpine habitats. (Oxford University Press, 2009).

  • 45.

    Blomberg, S. P., Garland, T., Ives, A. R. & Crespi, B. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745, https://doi.org/10.1554/0014-3820(2003)057[0717:tfpsic]2.0.co;2 (2003).

  • 46.

    Sobhy, I. S., Miyake, A., Shinya, T. & Galis, I. Oral secretions affect HIPVs induced by generalist (Mythimna loreyi) and specialist (Parnara guttata) herbivores in rice. J. Chem. Ecol. 43, 929–943, https://doi.org/10.1007/s10886-017-0882-4 (2017).

  • 47.

    Catalán, P. In Plant Genome: Biodiversity and evolution Vol. 1D (eds A. K. Sharma & A. Sharma) Ch. 10, 255-303 (Enfield, 2006).

  • 48.

    Inda, L. A., Segarra-Moragues, J. G., Muller, J., Peterson, P. M. & Catalan, P. Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol. Phylogen. Evol. 46, 932–957, https://doi.org/10.1016/j.ympev.2007.11.022 (2008).

  • 49.

    Minaya, M. et al. Contrasting dispersal histories of broad- and fine-leaved temperate Loliinae grasses: range expansion, founder events, and the roles of distance and barriers. J. Biogeogr. 44, 1980–1993, https://doi.org/10.1111/jbi.13012 (2017).

    • Article
    • Google Scholar
  • 50.

    Berenbaum, M. & Feeny, P. Toxicity of angular furanocoumarins to swallowtail butterflies – escalation in a co-evolutionary arms-race. Science 212, 927–929 (1981).

  • 51.

    Agrawal, A. A. & Fishbein, M. Phylogenetic escalation and decline of plant defense strategies. Proceedings of the National Academy of Sciences of the United States of America 105, 10057–10060, https://doi.org/10.1073/pnas.0802368105 (2008).

  • 52.

    Volf, M. et al. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett. 21, 83–92, https://doi.org/10.1111/ele.12875 (2018).

  • 53.

    Cacho, N. I., Kliebenstein, D. J. & Strauss, S. Y. Macroevolutionary patterns of glucosinolate defense and tests of defense-escalation and resource availability hypotheses. New Phytol. 208, 915–927, https://doi.org/10.1111/nph.13561 (2015).

  • 54.

    Rinnan, R., Steinke, M., McGenity, T. & Loreto, F. Plant volatiles in extreme terrestrial and marine environments. Plant Cell Environ 37, 1776–1789, https://doi.org/10.1111/pce.12320 (2014).

  • 55.

    Barkworth, M. E., Capels, K. M., Long, S., Anderton, L. K. & Piep, M. B. In Flora of North America: North of Mexico. Vol. 24 389–392 (Oxford University Press, Oxford, UK, 2007).

  • 56.

    Aeschimann, D., Lauber, K., Moser, D. M. & Theurillat, J.-P. Flora Alpina. (Haupt 2004).

  • 57.

    Allen, S. E., Grimshaw, H. M., Parkinson, J. A. & Quarmby, C. Chemical analysis of ecological materials. (Blackwell Scientific Publications., 1974).

  • 58.

    Landolt, E. Flora indicativa. 1. edn, (Haupt Verlag, 2010).

  • 59.

    Caroli, L., Glazer, I. & Gaugler, R. Entomopathogenic nematode infectivity assay: comparison of penetration rate into different hosts. Vol. 6 (1996).

  • 60.

    Lewis, G. C. & Clements, R. O. In Pest and Disease Management Handbook (ed David V. Alford) 84-122 (Blackwell Science Ltd, 2008).

  • 61.

    Hann, P., Trska, C., Wechselberger, K. F., Eitzinger, J. & Kromp, B. Phyllopertha horticola (Coleoptera: Scarabaeidae) larvae in eastern Austrian mountainous grasslands and the associated damage risk related to soil, topography and management. Springerplus 4, 139, https://doi.org/10.1186/s40064-015-0918-6 (2015).

  • 62.

    Dillman, A. R. & Sternberg, P. W. Entomopathogenic Nematodes. Curr. Biol. 22, R430–R431, https://doi.org/10.1016/j.cub.2012.03.047 (2012).

  • 63.

    Kergunteuil, A., Campos-Herrera, R., Sánchez-Moreno, S., Vittoz, P. & Rasmann, S. The abundance, diversity and metabolic footprint of soil nematodes is highest in high elevation alpine grasslands. Frontiers in Ecology and Evolution 4, 1–12, https://doi.org/10.3389/fevo.2016.00084 (2016).

    • Article
    • Google Scholar
  • 64.

    Turlings, T., Hiltpold, I. & Rasmann, S. The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358, 51–60, https://doi.org/10.1007/s11104-012-1295-3 (2012).

  • 65.

    Koppenhofer, A. M. & Fuzy, E. M. Effect of white grub developmental stage on susceptibility to entomopathogenic nematodes. J. Econ. Entomol. 97, 1842–1849 (2004).

    • Article
    • Google Scholar
  • 66.

    Rasmann, S., Erwin, A. C., Halitschke, R. & Agrawal, A. A. Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J. Ecol. 99, 16–25 (2011).

  • 67.

    vegan: Community Ecology Package v. 2.0-10 http://vegan.r-forge.r-project.org/ (2013).

  • 68.

    effsize: Efficient Effect Size Computation (R package version 0.7.4, 2018).

  • 69.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. Journal of Statistical Software 33, 1–22 (2010).

    • Article
    • Google Scholar
  • 70.

    Morris, W. F., Traw, M. B. & Bergelson, J. On testing for a tradeoff between constitutive and induced resistance. Oikos 112, 102–110 (2006).

    • Article
    • Google Scholar
  • 71.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223, https://doi.org/10.1111/j.2041-210X.2011.00169.x (2012).

    • Article
    • Google Scholar
  • 72.

    Dray, S. & Dufour, A. B. The ade4 package: Implementing the duality diagram for ecologists. Journal of Statistical Software 22, 1–20 (2007).

    • Article
    • Google Scholar
  • 73.

    Orme, D. et al. caper: Comparative Analyses of Phylogenetics and Evolution in R. (2013).

  • 74.

    Mazel, F. et al. Improving phylogenetic regression under complex evolutionary models. Ecology 97, 286–293, https://doi.org/10.1890/15-0086.1 (2016).


  • Source: Ecology - nature.com

    Single cell analyses reveal contrasting life strategies of the two main nitrifiers in the ocean

    Yield benefits of additional pollination to faba bean vary with cultivar, scale, yield parameter and experimental method