in

Climate warming enhances microbial network complexity and stability

  • 1.

    Montoya, J. M., Pimm, S. L. & Solé, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).

    CAS  Article  Google Scholar 

  • 2.

    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).

    CAS  Article  Google Scholar 

  • 3.

    Pržulj, N. & Malod-Dognin, N. Network analytics in the age of big data. Science 353, 123–124 (2016).

    Article  Google Scholar 

  • 4.

    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).

    Article  Google Scholar 

  • 5.

    Okuyama, T. & Holland, J. N. Network structural properties mediate the stability of mutualistic communities. Ecol. Lett. 11, 208–216 (2008).

    Article  Google Scholar 

  • 6.

    Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: a review of the theory. Popul. Ecol. 60, 319–345 (2018).

    Article  Google Scholar 

  • 7.

    Hillebrand, H. et al. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 21, 21–30 (2018).

    Article  Google Scholar 

  • 8.

    Toju, H. et al. Species-rich networks and eco-evolutionary synthesis at the metacommunity level. Nat. Ecol. Evol. 1, 0024 (2017).

    Article  Google Scholar 

  • 9.

    Montesinos-Navarro, A., Hiraldo, F., Tella, J. L. & Blanco, G. Network structure embracing mutualism–antagonism continuums increases community robustness. Nat. Ecol. Evol. 1, 1661–1669 (2017).

    Article  Google Scholar 

  • 10.

    Ullah, H., Nagelkerken, I., Goldenberg, S. U. & Fordham, D. A. Climate change could drive marine food web collapse through altered trophic flows and cyanobacterial proliferation. PLoS Biol. 16, e2003446 (2018).

    Article  CAS  Google Scholar 

  • 11.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    CAS  Article  Google Scholar 

  • 12.

    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article  CAS  Google Scholar 

  • 13.

    García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).

    Article  CAS  Google Scholar 

  • 14.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 15.

    Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Change 6, 595–600 (2016).

    CAS  Article  Google Scholar 

  • 16.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  • 17.

    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).

    Article  Google Scholar 

  • 18.

    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).

    Article  Google Scholar 

  • 19.

    Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 3, 612–619 (2019).

    Article  Google Scholar 

  • 20.

    Zhou, J. et al. Functional molecular ecological networks. mBio 1, e00169–10 (2010).

    Google Scholar 

  • 21.

    Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113 (2004).

    Article  CAS  Google Scholar 

  • 22.

    D’Amen, M., Mod, H. K., Gotelli, N. J. & Guisan, A. Disentangling biotic interactions, environmental filters, and dispersal limitation as drivers of species co-occurrence. Ecography 41, 1233–1244 (2018).

    Article  Google Scholar 

  • 23.

    Barner, A. K., Coblentz, K. E., Hacker, S. D. & Menge, B. A. Fundamental contradictions among observational and experimental estimates of non-trophic species interactions. Ecology 99, 557–566 (2018).

    Article  Google Scholar 

  • 24.

    Goberna, M. et al. Incorporating phylogenetic metrics to microbial co-occurrence networks based on amplicon sequences to discern community assembly processes. Mol. Ecol. Resour. 19, 1552–1564 (2019).

    Article  Google Scholar 

  • 25.

    Carr, A., Diener, C., Baliga, N. S. & Gibbons, S. M. Use and abuse of correlation analyses in microbial ecology. ISME J. 13, 2647–2655 (2019).

    Article  Google Scholar 

  • 26.

    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).

    Article  CAS  Google Scholar 

  • 27.

    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).

    CAS  Article  Google Scholar 

  • 28.

    Herren, C. M. & McMahon, K. D. Cohesion: a method for quantifying the connectivity of microbial communities. ISME J. 11, 2426–2438 (2017).

    Article  Google Scholar 

  • 29.

    Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2, e00122–11 (2011).

    Article  Google Scholar 

  • 30.

    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Zelikova, T. J. et al. Long-term exposure to elevated CO2 enhances plant community stability by suppressing dominant plant species in a mixed-grass prairie. Proc. Natl Acad. Sci. USA 111, 15456–15461 (2014).

    CAS  Article  Google Scholar 

  • 32.

    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).

    CAS  Article  Google Scholar 

  • 33.

    MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).

    Article  Google Scholar 

  • 34.

    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).

  • 35.

    Guo, X. et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nat. Commun. 11, 4897 (2020).

    CAS  Article  Google Scholar 

  • 36.

    Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    CAS  Article  Google Scholar 

  • 37.

    Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110 (2012).

    CAS  Article  Google Scholar 

  • 38.

    Galiana, N. et al. The spatial scaling of species interaction networks. Nat. Ecol. Evol. 2, 782–790 (2018).

    Article  Google Scholar 

  • 39.

    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    CAS  Article  Google Scholar 

  • 40.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  Article  Google Scholar 

  • 41.

    Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of heterotrophic and autotrophic respiration to experimental warming in a winter annual-dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).

    Google Scholar 

  • 42.

    Treves, D. S., Xia, B., Zhou, J. & Tiedje, J. M. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Microb. Ecol. 45, 20–28 (2003).

    CAS  Article  Google Scholar 

  • 43.

    Zhou, J., Xia, B., Huang, H., Palumbo, A. V. & Tiedje, J. M. Microbial diversity and heterogeneity in sandy subsurface soils. Appl. Environ. Microbiol. 70, 1723–1734 (2004).

    CAS  Article  Google Scholar 

  • 44.

    Zhou, J. et al. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68, 326–334 (2002).

    CAS  Article  Google Scholar 

  • 45.

    O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).

    Article  Google Scholar 

  • 46.

    Penton, C. R., Gupta, V. V. S. R., Yu, J. & Tiedje, J. M. Size matters: assessing optimum soil sample size for fungal and bacterial community structure analyses using high throughput sequencing of rRNA gene amplicons. Front. Microbiol. 7, 824 (2016).

    Google Scholar 

  • 47.

    Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62, 316–322 (1996).

    CAS  Article  Google Scholar 

  • 48.

    Hurt, R. A. et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl. Environ. Microbiol. 67, 4495–4503 (2001).

    CAS  Article  Google Scholar 

  • 49.

    Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl Acad. Sci. USA 110, 6548–6553 (2013).

    CAS  Article  Google Scholar 

  • 50.

    Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).

    Article  CAS  Google Scholar 

  • 51.

    Wen, C. et al. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. PLoS ONE 12, e0176716 (2017).

    Article  CAS  Google Scholar 

  • 52.

    Zhou, J. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288–14 (2015).

    CAS  Article  Google Scholar 

  • 53.

    Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).

    CAS  Article  Google Scholar 

  • 54.

    Luo, F. et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinformatics 8, 299 (2007).

    Article  CAS  Google Scholar 

  • 55.

    Luo, F., Zhong, J., Yang, Y., Scheuermann, R. H. & Zhou, J. Application of random matrix theory to biological networks. Phys. Lett. A 357, 420–423 (2006).

    CAS  Article  Google Scholar 

  • 56.

    Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 113 (2012).

    Article  Google Scholar 

  • 57.

    Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).

    Article  Google Scholar 

  • 58.

    Mehta, M. L. Random Matrices 2nd edn (Elsevier, 2004).

  • 59.

    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N. & Stanley, H. E. Universal and non-universal properties of cross-correlations in financial time series. Phys. Rev. Lett. 83, 1471–1474 (1999).

    CAS  Article  Google Scholar 

  • 60.

    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 44, 139–160 (1982).

    Google Scholar 

  • 61.

    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).

    Article  Google Scholar 

  • 62.

    Pawlowsky-Glahn, V. & Egozcue, J. J. Compositional data and their analysis: an introduction. Geol. Soc. Spec. Publ. 264, 1–10 (2006).

    CAS  Article  Google Scholar 

  • 63.

    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    CAS  Article  Google Scholar 

  • 64.

    Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and scalable correlation estimation for compositional data. Bioinformatics 35, 1064–1066 (2019).

    CAS  Article  Google Scholar 

  • 65.

    Weiss, S. et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).

    CAS  Article  Google Scholar 

  • 66.

    R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2019).

  • 67.

    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).

    Article  Google Scholar 

  • 68.

    Oksanen, J. et al. vegan: Community Ecology Package. Version 2.5-6 (2019).

  • 69.

    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 1262073 (2015).

    Article  CAS  Google Scholar 

  • 70.

    Yuan, M.M. et al. Mengting-Maggie-Yuan/warming-network-complexity-stability: warming-network-complexity-stability-v1.0. Version 1.0 (Zenodo, 2021); https://doi.org/10.5281/zenodo.4383469

  • 71.

    He, Z. et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J. 4, 1167–1179 (2010).

    CAS  Article  Google Scholar 

  • 72.

    He, Z. et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1, 67–77 (2007).

    CAS  Article  Google Scholar 

  • 73.

    Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 16892–16898 (2019).

    CAS  Article  Google Scholar 

  • 74.

    Zhou, J. & Ning, D. Stochastic community assembly: does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).

    Article  Google Scholar 

  • 75.

    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  • 76.

    Maslov, S. & Sneppen, K. Specificity and stability in topology of protein networks. Science 296, 910–913 (2002).

    CAS  Article  Google Scholar 

  • 77.

    Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

    Article  Google Scholar 

  • 78.

    Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    Article  CAS  Google Scholar 

  • 79.

    Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

    CAS  Article  Google Scholar 

  • 80.

    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Reply to ‘can we predict microbial keystones?’. Nat. Rev. Microbiol. 17, 194 (2019).

    CAS  Article  Google Scholar 

  • 81.

    Röttjers, L. & Faust, K. Can we predict keystones? Nat. Rev. Microbiol. 17, 193 (2019).

    Article  CAS  Google Scholar 

  • 82.

    Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).

    Article  CAS  Google Scholar 

  • 83.

    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).

    CAS  Article  Google Scholar 

  • 84.

    Hui, C., McGeoch, M. A., Harrison, A. E. S. & Bronstein, E. J. L. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am. Nat. 184, 684–694 (2014).

    Article  Google Scholar 

  • 85.

    Shi, Z. et al. Functional gene array-based ultrasensitive and quantitative detection of microbial populations in complex communities. mSystems 4, e00296–19 (2019).

    Google Scholar 

  • 86.

    Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 46 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool

    Climate change alters temporal dynamics of alpine soil microbial functioning and biogeochemical cycling via earlier snowmelt