Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).
Google Scholar
Arthington, A. H., Dulvy, N. K., Gladstone, W. & Winfield, I. J. Fish conservation in freshwater and marine realms: Status, threats and management. Aquat. Conserv. 26, 838–857 (2016).
Deinet, S. et al. The Living Planet Index (LPI) for Migratory Freshwater Fish—Technical Report. (World Fish Migration Foundation, 2020).
Limburg, K. E. & Waldman, J. R. Dramatic declines in North Atlantic diadromous fishes. Bioscience 59, 955–965 (2009).
Lennox, R. J. et al. One hundred pressing questions on the future of global fish migration science, conservation, and policy. Front. Ecol. Evol. 7, 286 (2019).
Google Scholar
Jellyman, D.J. An enigma: how can freshwater eels (Anguilla spp.) be such a successful genus yet be universally
threatened? Rev. Fish Biol. Fish. https://doi.org/10.1007/s11160-021-09658-8 (2021).
Gross, M. R., Coleman, R. M. & McDowall, R. M. Aquatic productivity and the evolution of diadromous fish migration. Science 239, 1291–1293 (1988).
Google Scholar
Aarestrup, K. et al. Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325, 1660–1660 (2009).
Google Scholar
Righton, D. et al. Empirical observations of the spawning migration of European eels: The long and dangerous road to the Sargasso Sea. Sci. Adv. 2, e1501694 (2016).
Google Scholar
Chow, S. et al. Light-sensitive vertical migration of the Japanese eel Anguilla japonica revealed by real-time tracking and its utilization for geolocation. PLoS ONE 10, e0121801 (2015).
Google Scholar
Béguer-Pon, M. et al. Tracking anguillid eels: Five decades of telemetry-based research. Mar. Freshw. Res. 69, 199–219 (2018).
Jellyman, D. & Tsukamoto, K. First use of archival transmitters to track migrating freshwater eels Anguilla dieffenbachii at sea. Mar. Ecol. Prog. Ser. 233, 207–215 (2002).
Google Scholar
Watanabe, S. et al. Reexamination of the spawning migration of Anguilla dieffenbachii in relation to water temperature and the lunar cycle. N. Z. J. Mar. Freshw. Res. 54, 131–147 (2020).
McNiven, I. et al. Phased redevelopment of an ancient Gunditjmara fish trap over the past 800 years: Muldoons Trap Complex, Lake Condah, southwestern Victoria. Aust. Archaeol. 81, 44–58 (2015).
Rose, D., Bell, D. & Crook, D. A. Restoring habitat and cultural practice in Australia’s oldest and largest traditional aquaculture system. Rev. Fish Biol. Fish. 26, 589–600 (2016).
Pike, C., Crook, V. & Gollock, M. Anguilla australis (errata version published in 2019). The IUCN Red List of Threatened Species 2019: e.T195502A154801652 (2019). https://doi.org/10.2305/IUCN.UK.2019-2.RLTS.T195502A154801652.en. Downloaded on 14 January 2020.
Miller, M. J. et al. Review of Ocean-Atmospheric Factors in the Atlantic and Pacific Oceans Influencing Spawning and Recruitment of Anguillid Eels. 231–249 (American Fisheries Society Symposium, 2009).
Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv. 4, 321–333 (2015).
Schmidt, J. The freshwater eels of Australia with some remarks on the shortfin species of Anguilla. Rec. Aust. Mus. 16, 179–210 (1928).
Jespersen, P. Indo-Pacific leptocephaids of the genus Anguilla. Systematic and biological studies. Dana-Rep. Carlsberg Found. 22, 1–128 (1942).
Castle, P. H. J. Anguillid leptocephali in the southwest Pacific. Zool. Pubs Vic. Univ. Wellingt. 33, 1–14 (1963).
Aoyama, J. et al. Distribution and dispersal of anguillid leptocephali in the western Pacific Ocean revealed by molecular analysis. Mar. Ecol. Prog. Ser. 188, 193–200 (1999).
Google Scholar
Kuroki, M. et al. Distribution of anguillid leptocephali and possible spawning areas in the South Pacific Ocean. Progr. Oceanogr. 180, 102234 (2020).
Todd, P. R. Size and age of migrating New Zealand freshwater eels (Anguilla spp.). N. Z. J. Mar. Freshw. Res. 14, 283–293 (1980).
Sloane, R. Preliminary observations of migrating adult freshwater eels (Anguilla australis australis Richardson) in Tasmania. Mar. Freshw. Res. 35, 471–476 (1984).
Google Scholar
Økland, F., Thorstad, E. B., Westerberg, H., Aarestrup, K. & Metcalfe, J. D. Development and testing of attachment methods for pop-up satellite archival transmitters in European eel. Anim. Biotelemetry 1, 1–13 (2013).
Kuroki, M. et al. Distribution and early life-history characteristics of anguillid leptocephali in the western South Pacific. Mar. Freshw. Res. 59, 1035–1047 (2008).
Righton, D. et al. The Anguilla spp. migration problem: 40 million years of evolution and two millennia of speculation. J. Fish Biol. 81, 365–386 (2012).
Google Scholar
Westerberg, H. Marine migratory behavior of the European silver eel. In Physiology and Ecology of Fish Migration (eds H. Ueda, H. & Tsukamoto, K.) 80–103 (CRC Press, 2013).
Chang, Y.-L.K., Olmo, G. D. & Schabetsberger, R. Tracking the marine migration routes of South Pacific silver eels. Mar. Ecol. Prog. Ser. 646, 1–12 (2020).
Google Scholar
Westerberg, H., Sjöberg, N., Lagenfelt, I., Aarestrup, K. & Righton, D. Behaviour of stocked and naturally recruited European eels during migration. Mar. Ecol. Prog. Ser. 496, 145–157 (2014).
Google Scholar
Ridgway, K. & Godfrey, J. Seasonal cycle of the East Australian current. J. Geophys. Res. Oceans 102, 22921–22936 (1997).
Google Scholar
Ridgway, K. & Dunn, J. Mesoscale structure of the mean East Australian Current System and its relationship with topography. Prog. Oceanogr. 56, 189–222 (2003).
Google Scholar
Westin, L. Migration failure in stocked eels Anguilla anguilla. Mar. Ecol. Prog. Ser. 254, 307–311 (2003).
Google Scholar
Nordeng, H. A pheromone hypothesis for homeward migration in anadromous salmonids. Oikos 28, 155–159 (1977).
Google Scholar
Hays, G. C., Cerritelli, G., Esteban, N., Rattray, A. & Luschi, P. Open ocean reorientation and challenges of island finding by sea turtles during long-distance migration. Curr. Biol. 30, 3236-3242 e3233 (2020).
Google Scholar
Béguer-Pon, M. et al. Shark predation on migrating adult American eels (Anguilla rostrata) in the Gulf of St. Lawrence. PLoS One 7, e46830 (2012).
Google Scholar
Wahlberg, M. et al. Evidence of marine mammal predation of the European eel (Anguilla anguilla L.) on its marine migration. Deep Sea Res. A 86, 32–38 (2014).
Béguer-Pon, M. et al. Large-scale migration patterns of silver American eels from the St. Lawrence River to the Gulf of St. Lawrence using acoustic telemetry. Can. J. Fish. Aquat. Sci. 71, 1579–1592 (2014).
Strøm, J. F. et al. Ocean predation and mortality of adult Atlantic salmon. Sci. Rep. 9, 1–11 (2019).
Google Scholar
Hays, G. C. Tracking animals to their death. J. Anim. Ecol. 83, 5–6 (2014).
Google Scholar
Amilhat, E. et al. First evidence of European eels exiting the Mediterranean Sea during their spawning migration. Sci. Rep. 6, 21817 (2016).
Google Scholar
Schabetsberger, R. et al. Oceanic migration behaviour of tropical Pacific eels from Vanuatu. Mar. Ecol. Prog. Ser. 475, 177–190 (2013).
Google Scholar
Schabetsberger, R. et al. Oceanic migration behaviour of Pacific eels from Samoa. Fish. Manag. Ecol. 26, 53–56 (2018).
Béguer-Pon, M., Shan, S., Castonguay, M. & Dodson, J. J. Behavioural variability in the vertical and horizontal oceanic migrations of silver American eels. Mar. Ecol. Prog. Ser. 585, 123–142 (2017).
Google Scholar
Wu, K. et al. Illumination-dependent diel-vertical migration behavior in the genus Anguilla. J. Fish. Soc. Taiwan 45, 225–232 (2018).
Tesch, F. & Rohlf, N. Migration from continental waters to the spawning grounds. In Eel Biology (eds. Aida, K., Tsukamoto, K., Yamauchi, K.) 223–234. (Springer, 2003).
Sébert, P., Scaion, D. & Belhomme, M. High hydrostatic pressure improves the swimming efficiency of European migrating silver eel. Respir. Physiol. Neurobiol. 165, 112–114 (2009).
Google Scholar
Jellyman, D. & Tsukamoto, K. Vertical migrations may control maturation in migrating female Anguilla dieffenbachii. Mar. Ecol. Prog. Ser. 404, 241–247 (2010).
Google Scholar
Benoit-Bird, K. J., Dahood, A. D. & Würsig, B. Using active acoustics to compare lunar effects on predator–prey behavior in two marine mammal species. Mar. Ecol. Prog. Ser. 395, 119–135 (2009).
Google Scholar
Owen, K., Andrews, R. D., Baird, R. W., Schorr, G. S. & Webster, D. L. Lunar cycles influence the diving behavior and habitat use of short-finned pilot whales around the main Hawaiian Islands. Mar. Ecol. Prog. Ser. 629, 193–206 (2019).
Google Scholar
Crook, D. A. et al. Environmental cues and extended estuarine residence in seaward migrating eels (Anguilla australis). Freshw. Biol. 59, 1710–1720 (2014).
Musyl, M. K. et al. Performance of pop-up satellite archival tags. Mar. Ecol. Prog. Ser. 433, 1–28 (2011).
Google Scholar
Weng, K. C. et al. Migration and habitat of white sharks (Carcharodon carcharias) in the eastern Pacific Ocean. Mar. Biol. 152, 877–894 (2007).
Gill, A., Bartlett, M. & Thomsen, F. Potential interactions between diadromous fishes of UK conservation importance and the electromagnetic fields and subsea noise from marine renewable energy developments. J. Fish Biol. 81, 664–695 (2012).
Google Scholar
Aarestrup, K. et al. Survival and progression rates of large European silver eel Anguilla anguilla in late freshwater and early marine phases. Aquat. Biol. 9, 263–270 (2010).
Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).
Google Scholar
Westerberg, H. & Wickström, H. Stock assessment of eels in the Baltic: Reconciling survey estimates to achieve quantitative analysis. ICES J. Mar. Sci. 73, 75–83 (2016).
Kaifu, K. Challenges in assessments of Japanese eel stock. Mar. Policy 102, 1–4 (2019).
Source: Ecology - nature.com